Journal of the Institute of Polytechnics, Osaka City University, Vol, 3, No, J-2,Series A

On the Singularity of the Peturbation-Term in the Field Quantum Mechanics

By Osamu MIYATAKE

(Received September 15, 1952)

Summary

Let H be a total Hamiltonian of a system consisting of two fields. When *H* is divided into two parts in two ways as $H=H_1^0+H_1'=H_2^0+H_2'$, where H_1^0 and H_2^0 are unperturbed terms and H'_1 and H'_2 are perturbation terms, then (i) two spaces $\mathfrak{D}(H_2^0)$ and $\mathfrak{D}(H_2^0)$ which are determined by the systems of eigenvectors of H_1^0 and H_2^0 respectively, are mutually orthogonal, and (ii) the zero point energy of H_1^0 differs from that of H_2^0 by infinity. The zero point energy of the total Hamiltonian of a system in which a fixed nucleon and a real scalar meson field are interacting, amounts to $-g^2c^2/4V \cdot \sum 1/\omega_v^2$ which diverges to minus infinity. The total Hamiltonian of a system electron plus photon field has the expectation value $(H\Psi_{\beta}, \Psi_{\beta}) = c\beta + \sum (1/2 - 2\pi c^2e^2l^2)$ *(hVw₃)* $h\omega_{\lambda}$, where Ψ_{β} is a certain vector normalized to 4, c_{β} a finite constant depending on β , and l_{λ} the projection on the x-axis of the polarization vector e_{λ} of the λ -photon. The number of Ψ_{β} 's is enumerably infinite and they are orthogonal with one another.

1. Introduction

In the previous paper¹ we have proved that the interaction term of a system which consists of a nucleon and a complex scalar meson field has no domain in a space, each of whose vectors is a superposition of states consisting of the nucleon and a finite number of mesons.

In a similar way, we can prove that the interaction term of a system electron field plus photon field bas no domain in a space, each of whose vectors is a superposition of states which consits of a finite number of electrons and photons. The proof will be given elswhere.

Thus a vector representing a state in which an electron and a photon are in respective given state, does not belong to the domain of the total Hamiltonian. Here the zero point energy of the non-interacting term is not taken into account.

The total Hamiltonian operator is usually divided into two parts, the one is the principal part H^0 and the other is the perturbation term H' . H^0 can be transformed into a diagonal form by a suitable vnitary transformation and