Journal of the Institute of Polytechnics, Osaka City University, Vol. 1, No. 2, Series, A

On the Foundation of Orders in Groups

By Shin-ichi Matsushita

(Received May 20, 1951)

0. Orderd groups, or o-groups, have been studied by G. Birkhoff, A. H. Clifford, H. Cartan, T. Nakayama, C. J. Everett and S. Ulam, J. von Neuman and others, while lattice ordered groups, or *l*-groups, also discussed by many mathematicians, G. Birkhoff and others.¹⁾

The present work is to establish the structure or order-buds (cf. below) in groups. This notion is closely conjugated with that of algebraic systems²⁾; in other words, an order-bud is nothing but the modification of an algebraic order in groups.

1. We shall begin with some definitions. Let G be a group, e being its group identity, and P a subset of G with the following properties;

i) $e \in P$,

ii) $PP \subset P$.

We call such *P* an order-bud in **G**; in facts, we can define an order in **G**, $x \leq y(P,l)$, $x, y \in G$, when $x^{-1}y \in P$, and another order, $x \leq y(P,r)$, when $yx^{-1} \in P$.

The former, $\leq (P.l)$, is called a, *left order* in G, while the latter, $\leq (P,r)$, a *right order*.

(1. 1) If $x \leq y(P,l)$ or $x \leq y(P,r)$, then for all $t \in G$, $tx \leq ty(P,l)$ or $xt \leq yt(P,r)$ respectively.

It comes from the equalities $(tx)^{-1} \cdot ty = x^{-1}t^{-1}ty = x^{-1}y$ and $yt \cdot (xt)^{-1} = ytt^{-1}x^{-1} = yx^{-1}$.

(1. 2) The set of all t such that $x \leq t(P,l)$ or $x \leq t(P,r)$ coincides with $x \cdot P$ or $P \cdot x$ respectively.

We denote that $x \cdot P = P_x^i$, $P \cdot x = P_x^r$, then we have

- (1.3) $P_{e}^{i} = P_{e}^{r} = P$.
- (1.4) $y \in P_x^i$ implies $P_y^i \subset P_x^i$ and $y \in P_x^r$ implies $P_y^r \subset P_x^r$.

(1.5) $a \cdot P_{l}^{x} = P_{ax}^{l}, P_{x}^{r} \cdot a = P_{xa}^{r},$

If an order-bud P in G fulfils the further condition; for every $t \in G$,

iii) $tPt^{-1}\subset P$,

then we call P normal.

(1. 6) $P_a^{l} = P_a^{r} = a \cdot P = P \cdot a$ for normal P.

We put $P_a^i(=P_a^r)=P_a$ for normal P.

Let $\{P^{\lambda}\}_{\lambda \in \Lambda}$ be a family of order-buds in **G**, then the set-intersection of them

 $\cap_{\lambda \in \Lambda} P^{\lambda}$