On a Necessary and Sufficient Condition of Metrizability

By Jun-iti NAGATA

It is well known that the second countability axiom is sufficient for a regular space to be metrizable, but it is not necessary. In this paper we shall show that some extension of the second countability axiom is necessary and sufficient for a regular space to be metrizable, and shall study some applications of this result.

Definition. Let R be a topological space and $\{U_\beta | \beta \in B\}$ ($\alpha \in A$) be open coverings of R. We call $\{U_\alpha | \alpha \in A\}$ an open basis of R, when each open set N of R can be represented in the form

$$N = \sum_{U_\alpha \subset N} U_\alpha.$$

β-Countability Axiom. We say that R satisfies β-countability axiom, when there exists an open basis of R consisting of an enumerable number of nbd (=neighbourhood) finite open coverings $\{U_\alpha\}$.

It is an extension of the second countability axiom.

α-Countability Axiom. We say that R satisfies α-countability axiom, when there exists a collection of an enumerable number of nbd finite coverings $\{U_n | n = 1, 2, \ldots\}$, $\{U_\beta | U_\beta = \{U_\alpha | \beta \in B\}\}$ such that for each pair of points $a, b \in R$, $a \neq b$, there exists $U_\alpha \in U_n : a \in U_\alpha, b \notin U_\alpha$ for some n.

We shall say that $\{U_\alpha\}$ satisfies the condition of α-countability, when $\{U_\alpha\}$ has the above property.

Remark. The fact that U_α covers R is not essential in α, β-countabilities. For when U_α does not cover R, we may consider the covering $\{R, U_\alpha\}$ in the place of U_α.

Theorem 1. In order that a regular space R is metrizable, it is necessary and sufficient that R satisfies the β-countability axiom.

Proof. Since the necessity is obvious from the theorem of A. H. Stone\(^1\), we prove only the sufficiency.

1. Let R be a regular space satisfying the β-countability axiom.