ON PRIME RIGHT IDEALS OF INTERMEDIATE RINGS OF A FINITE NORMALIZING EXTENSION

Таісні NAKAMOTO

(Received April 23, 1986)

Introduction

Throughout this paper, S will represent a ring extension of a ring R with common identity 1. Let I be a right ideal of R, and $b_R(I) = \{r \in R | Rr \subset I\}$. I is called a prime right ideal, provided that if X, Y are right ideals of R with $XY \subset I$, then either $X \subset I$ or $Y \subset I$. It is clear that every maximal right ideal is a prime right ideal. If I is a prime right ideal, then $b_R(I)$ is a prime ideal. Next, let R' be a ring. An R-R'-bimodule M is called a *torsionfree* R-R'bimodule if $r_M(X) = l_M(Y) = 0$ for every essential ideal X of R and every essential ideal Y of R', where $r_M(X)$ (resp. $l_M(Y)$) is the right (resp. left) annihilator of X (resp. Y) in M, and M is called a *finite normalizing* R-R'-bimodule if there exist elements a_1, a_2, \dots, a_n of M such that $M = \sum_{i=1}^{n} Ra_i$ and $Ra_i = a_i R'$ for i = $1, 2, \dots, n$. Such a system $\{a_i\}_i$ is called a normalizing generating system of M. Finally S is a *finite normalizing extension* of R if S is a finite normalizing R-Rbimodule.

In [1], [2], [3], [4] and [6], "cutting down" theorems for a prime ideals were studied. In the previous paper [7], we have obtained a "cutting down" theorem for a prime right ideal of a finite normalizing extension under the hypothesis that the finite normalizing extension considered is torsionfree. The present objective is to reprove the same without the hypothesis "torsionfree"; we shall prove the following theorem.

Theorem. Let S be an arbitrary finite normalizing extension of R, T a ring with $R \subset T \subset S$. If J is a prime right ideal of T, then there exist prime right ideals K_1, K_2, \dots, K_s of R such that $\bigcap_{i=1}^s K_i = J \cap R$. In this case, $b_R(J \cap R) = \bigcap_{i=1}^s b_R(K_i)$.

1. Preliminaries

Throughout this paper, S will represent a finite normalizing extension of R, and T a ring with $R \subset T \subset S$.

Let P be a prime ideal of T. In studying P and T/P, one can usually reduce problems to the case in which (1) S is a prime ring, and (2) $A \cap T \subset P$ for