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In [4], by observing the directly finiteness of projective modules, the first
author classified directly finite (d.f. for short) regular rings satisfying the com-
parability axiom (c. axiom for short) into three types: Type A, Type B and
Type C.

In the present paper, we give a more explicite criterion of the directly
finiteness of projective modules over each types and show the following for a
d.f. regular ring R satisfying the c. axiom: (a) R is Type A if and only if Soc
(R)=0 and the intersection IQ(R) of all nonzero ideals of R is nonzero, (b)
R is Type B if and only if Soc(R)=0, /O(JR)=O and the family L(R) of all ideals
of R has a cofinal subfamily, (c) R is Type C if and only if Soc(R) Φ 0, or Io

(R)=0 and L(R) does not have any cofinal subfamilies. As an application we
show the following for a projective module P over a d.f. regular ring satisfying
the c. axiom: P is directly infinite (d.inf. for short) if and only if P contains
a direct summand which is isomorphic to XQX for a suitable nonzero module X.

Throughout this paper we assume that R is a d.f. regular ring satisfying
the c. axiom, and all i?-modules considered are unital right i?-modules.

1. Notations and definitions

For two i?-modules X and F, we use X< Y (resp. ! < ® F ) to mean that
X is isomorphic to a submodule of Y (resp. a direct summand of Y). X^pY
means that X< Y and X^ Y. For a submodule X of an Λ-module Y,X<®Y
means that X is a direct summand of Y. For a cardinal number a and an R-
module X, aX denotes a direct sum of α-copies of X. For a set /, we denote by
I /1 the cardinal number of /. We denote by L(R) the family of all ideals of R.
Since R satisfies the c. axiom, L(R) is a linearly ordered set under inclusion ([1,
Proposition 8.5]). We put I0(R)= Π {/10φ/£ΞL(R)}. We denote by Soc(R) the
socle of R. We note that if Soc(R)Φθ then it is homogeneous and coincides with


