Kutami, M. and Oshiro, K. Osaka J. Math. 24 (1987), 465-473

ON PROJECTIVE MODULES OVER DIRECTLY FINITE REGULAR RINGS SATISFYING THE COMPARABILITY AXIOM II

Dedicated to Professor Hisao Tominaga on his 60th birthday

MAMORU KUTAMI AND KIYOICHI OSHIRO

(Received April 7, 1986)

In [4], by observing the directly finiteness of projective modules, the first author classified directly finite (d.f. for short) regular rings satisfying the comparability axiom (c. axiom for short) into three types: Type A, Type B and Type C.

In the present paper, we give a more explicite criterion of the directly finiteness of projective modules over each types and show the following for a d.f. regular ring R satisfying the c. axiom: (a) R is Type A if and only if *Soc* (R)=0 and the intersection $I_0(R)$ of all nonzero ideals of R is nonzero. (b) R is Type B if and only if Soc(R)=0, $I_0(R)=0$ and the family L(R) of all ideals of R has a cofinal subfamily. (c) R is Type C if and only if Soc(R)=0, or I_0 (R)=0 and L(R) does not have any cofinal subfamilies. As an application we show the following for a projective module P over a d.f. regular ring satisfying the c. axiom: P is directly infinite (d.inf. for short) if and only if P contains a direct summand which is isomorphic to $\aleph_0 X$ for a suitable nonzero module X.

Throughout this paper we assume that R is a d.f. regular ring satisfying the c. axiom, and all R-modules considered are unital right R-modules.

1. Notations and definitions

For two *R*-modules X and Y, we use $X \leq Y$ (resp. $X \leq \oplus Y$) to mean that X is isomorphic to a submodule of Y (resp. a direct summand of Y). $X \leq Y$ means that $X \leq Y$ and $X \cong Y$. For a submodule X of an *R*-module Y, $X < \oplus Y$ means that X is a direct summand of Y. For a cardinal number α and an *R*-module X, αX denotes a direct sum of α -copies of X. For a set I, we denote by |I| the cardinal number of I. We denote by L(R) the family of all ideals of R. Since R satisfies the c. axiom, $L(R) = \bigcap \{I \mid 0 \neq I \in L(R)\}$. We denote by Soc(R) the socle of R. We note that if $Soc(R) \neq 0$ then it is homogeneous and coincides with $I_0(R)$.