ON SOME SHARPLY T-TRANSITIVE SETS

MITSUO YOSHIZAWA

(Received February 5, 1986)

Let S_k be the symmetric group on a set $\Omega = \{1, 2, \dots, k\}$ and t be an integer with $t \ge 2$. A sharply *t*-transitive set *G* on Ω is a subset of S_k with the property that for every two ordered *t*-tuples $\alpha_1, \dots, \alpha_t$ and β_1, \dots, β_t of elements in $\Omega(\alpha_t +$ $(\alpha_j, \beta_i \neq \beta_j \text{ for } i \neq j)$ there uniquely exists $g \in G$ which takes α_i into $\beta_i:(\alpha_i)g=$ $B_i(i=1, \dots, t)$. If $t=k-1$, G is S_k . So from now on we assume $t < k$. Although the sharply *t*-transitive groups were classified by Jordan and Zassenhaus (cf. [1]), it seems difficult to classify the sharply t -transitive sets. Now we define a distance *d* in S_k as follows: For two elements g_1 and g_2 in S_k ,

$$
d(g_1, g_2) = |\{\alpha \in \Omega \colon (\alpha)g_1 \neq (\alpha)g_2\}|.
$$

Then (S_k, d) is a metric space and we have the following two propositions.

Proposition 1. Let g be an element in a sharply t-transitive set G on $\Omega(|\Omega|)$ $(k=k)$ and $x_i(0 \leq i \leq k)$ denote the number of elements $g' \in G$ satisfying $d(g,g') = k-i$. *Then the following equality holds for* $i=0, 1, \dots, t-1$ *:*

$$
x_i = \sum_{j=i}^{i-1} {j \choose i} {k \choose j} \{ (k-j) (k-j-1) \cdots (k-t+1) - 1 \} (-1)^{j+i}.
$$

In particular x/s are uniquely determined independent of the choice of an element g in G.

Proof. Counting in two ways the number of the set $\{(g', (\alpha_1, \dots, \alpha_i)\colon g'\})$ an element $\neq g$, $\{\alpha_1, \dots, \alpha_i\} \subseteq \Omega$, $\alpha_u \neq \alpha_v$ for $u \neq v$, $(\alpha_j)g = (\alpha_j)g'$ for $j = 1$, gives the following equality for $i=0, 1, \dots, t-1$:

$$
x_i + {i+1 \choose i} x_{i+1} + \cdots + {t-1 \choose i} x_{t-1} = {k \choose i} \{(k-i) (k-i-1) \cdots (k-t+1) - 1\}.
$$

Hence we have

$$
M\begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{t-1} \end{pmatrix} = \begin{pmatrix} \binom{k}{0} \{k(k-1)\cdots(k-t+1)-1\} \\ \binom{k}{1} \{ (k-1)(k-2)\cdots(k-t+1) - 1 \} \\ \vdots \\ \binom{k}{t-1} \{ (k-t+1)-1 \} \end{pmatrix},
$$