ON SOME SHARPLY T-TRANSITIVE SETS

MITSUO YOSHIZAWA

(Received February 5, 1986)

Let S_k be the symmetric group on a set $\Omega = \{1, 2, \dots, k\}$ and t be an integer with $t \ge 2$. A sharply t-transitive set G on Ω is a subset of S_k with the property that for every two ordered t-tuples $\alpha_1, \dots, \alpha_t$ and β_1, \dots, β_t of elements in $\Omega(\alpha_i \neq \alpha_j, \beta_i \neq \beta_j$ for $i \neq j$) there uniquely exists $g \in G$ which takes α_i into $\beta_i: (\alpha_i)g = \beta_i(i=1,\dots,t)$. If t=k-1, G is S_k . So from now on we assume t < k. Although the sharply t-transitive groups were classified by Jordan and Zassenhaus (cf. [1]), it seems difficult to classify the sharply t-transitive sets. Now we define a distance d in S_k as follows: For two elements g_1 and g_2 in S_k ,

$$d(g_1, g_2) = | \{ \alpha \in \Omega \colon (\alpha)g_1 \neq (\alpha)g_2 \} | .$$

Then (S_k, d) is a metric space and we have the following two propositions.

Proposition 1. Let g be an element in a sharply t-transitive set G on $\Omega(|\Omega| = k)$ and $x_i(0 \le i \le k)$ denote the number of elements $g' \in G$ satisfying d(g,g') = k-i. Then the following equality holds for $i=0, 1, \dots, t-1$:

$$x_{i} = \sum_{j=i}^{t-1} {j \choose i} {k \choose j} \{(k-j) \ (k-j-1) \cdots (k-t+1) - 1\} \ (-1)^{j+i}$$

In particular x_i 's are uniquely determined independent of the choice of an element g in G.

Proof. Counting in two ways the number of the set $\{(g', (\alpha_1, \dots, \alpha_i\}): g' an element \neq g, \{\alpha_1, \dots, \alpha_i\} \subseteq \Omega, \alpha_u \neq \alpha_v \text{ for } u \neq v, (\alpha_j)g = (\alpha_j)g' \text{ for } j=1, \dots, i.\}$ gives the following equality for $i=0, 1, \dots, t-1$:

$$x_{i} + \binom{i+1}{i} x_{i+1} + \dots + \binom{t-1}{i} x_{t-1} = \binom{k}{i} \{(k-i) \ (k-i-1) \cdots (k-t+1) - 1\}$$

Hence we have

$$M\binom{x_{0}}{\substack{x_{1}\\ \vdots\\ x_{t-1}}} = \binom{\binom{k}{0}\{k(k-1)\cdots(k-t+1)-1\}}{\binom{k}{1}\{(k-1)(k-2)\cdots(k-t+1)-1\}} \\ \vdots\\ \binom{k}{(t-1)}\{(k-t+1)-1\}},$$