Sekiguchi, K. Osaka J. Math. **37** (2000), 773–788

EXTENSIONS OF SOME 2-GROUPS WHICH PRESERVE THE IRREDUCIBILITIES OF INDUCED CHARACTERS

Dedicated to Professor Yukio Tsushima on his 60th birthday

KATSUSUKE SEKIGUCHI

(Received Janualy 27, 1999)

1. Introduction

Let Q_n and D_n denote the generalized quaternion group and the dihedral group of order 2^{n+1} $(n \ge 2)$, respectively. Let SD_n denote the semidihedral group of order 2^{n+1} $(n \ge 3)$.

As is stated in [3], these groups have remarkable properties among all 2-groups. Moreover, Yamada and Iida [4] proved the following interesting result:

Let **Q** denote the rational field. Let *G* be a 2-group and χ a complex irreducible character of *G*. Then there exist subgroups $H \triangleright N$ in *G* and the complex irreducible character ϕ of *H* such that $\chi = \phi^G$, $\mathbf{Q}(\chi) = \mathbf{Q}(\phi)$, $N = \text{Ker}\phi$ and

$$H/N \cong Q_n (n \ge 2)$$
, or $D_n (n \ge 3)$, or $SD_n (n \ge 3)$, or $C_n (n \ge 0)$,

where C_n is the cyclic group of order 2^n , and $\mathbf{Q}(\chi) = \mathbf{Q}(\chi(g), g \in G)$.

In [3], Yamada and Iida considered the case when N = 1. Note that ϕ is faithful in this case. They studied the following problem:

Problem. Let ϕ be a faithful irreducible character of H, where $H = Q_n$ or D_n or SD_n . Determine the extension group G of H such that the induced character ϕ^G is also irreducible.

It is well-known that the groups Q_n , D_n and SD_n have faithful irreducible characters. It is also known that they are algebraically conjugate to each other. Hence the irreducibility of ϕ^G , where ϕ is a faithful irreducible character of Q_n or D_n or SD_n , is independent of the choice of ϕ , but depends only on these groups.

In [3], Yamada and Iida solved this problem when [G : H] = 2 and 4 for all $H = Q_n$ or D_n or SD_n .

The purpose of this paper is to solve this problem when [G : H] = 8 for all $H = Q_n$ or D_n or SD_n .