EXISTENCE OF SPIN STRUCTURES ON DOUBLE BRANCHED COVERING SPACES OVER FOUR-MANIFOLDS

Dedicated to the memory of Professor Katsuo Kawakubo

Seiji NAGAMI

(Received May 8, 1998)

1. Introduction

In this paper, we shall consider whether a double branched covering space over a given 4-manifold is spin or not. It is a fact known to experts that the double branched covering space \widetilde{X}_{S^4} over the 4-sphere S^4 branched along a smoothly embedded connected closed surface F is spin if and only if F is orientable. However, the proof of this fact has never been published before as far as the author knows.

Hitchin [7] has shown that the double branched covering space $\tilde{X}_{CP^2}^q$ over the complex projective plane CP^2 branched along a non-singular algebraic curve C of degree 2q is spin if and only if q is odd. Note that $\tilde{X}_{CP^2}^q$ is simply-connected [7, p. 22] and that $\tilde{X}_{CP^2}^3$ is a K3 surface [5, p. 28].

The base spaces S^4 and $\mathbb{C}P^2$ of \widetilde{X}_{S^4} and $\widetilde{X}_{\mathbb{C}P^2}^q$ respectively are both simply connected. The former is spin, and the latter is not. The total space \widetilde{X}_{S^4} is spin when F is orientable, and the total space $\widetilde{X}_{\mathbb{C}P^2}^q$ is not necessarily spin, although the branch locus C is always orientable. Whether the double branched covering space $\widetilde{X}_{\mathbb{C}P^2}^q$ is spin or not depends on the homology class represented by the branch locus C in the base 4-manifold $\mathbb{C}P^2$.

Moreover, until now, there has been no example of a *spin* double branched covering space over a simply connected closed smooth 4-manifold branched along a smoothly embedded *non-orientable* surface.

In this paper, we consider a more general case. Let X be an oriented connected closed smooth 4-manifold with $H_1(X; \mathbb{Z}_2) = 0$ and \tilde{X} the double branched covering space over X branched along a connected closed surface F smoothly embedded in X. We consider whether \tilde{X} is spin or not.

Our result for this problem is the following.

Theorem 1.1. Let X be a connected closed smooth 4-manifold with $H_1(X; \mathbb{Z}_2) = 0$ and \widetilde{X} the double branched covering space over X branched along a connected closed surface F smoothly embedded in X. Then \widetilde{X} is spin if and only if F is orientable and the modulo 2 reduction of $[F]/2 \in H_2(X; \mathbb{Z})$ coincides with the Poincaré