Fujisaki, M Osaka J. Math. 36 (1999), 981-992

ON PROBABILISTIC APPROACH TO THE EIGENVALUE PROBLEM FOR MAXIMAL ELLIPTIC OPERATOR

MASATOSHI FUJISAKI

(Received February 5, 1998)

0. Introduction

Let *D* be a bounded domain of R^d with its smooth boundary ∂D . Let $L^{\alpha}, \alpha \in A$ (A is a given set), be non-degenerate second-order linear differential operator with parameter α of the following type:

(0.1)
$$
L^{\alpha} = \sum_{i,j=1}^{d} a_{ij}(\alpha, x) \partial_i \partial_j + \sum_{i=1}^{d} b_i(\alpha, x) \partial_i - c(\alpha, x)
$$

and let also L be a (nonlinear) operator, given by the formula $L = \sup_{\alpha \in A} L^{\alpha}$, which is called the maximal operator. Let consider a Dirichlet eigenvalue problem with respect to L on D :

(0.2)
$$
Lu + \lambda u = 0
$$
 on *D*, $u > 0$ on *D*, and $u|_{\partial D} = 0$.

In this paper, under the assumption that there exist an eigenvalue λ and corresponding (smooth) eigenfunction *u* satisfying (0.2), we will discuss various properties of λ and also obtain a probabilistic representation for λ .

We shall prove in §2 that λ is smaller than any λ^{α} , $\alpha \in A$, where for each $\alpha \in A$, λ^{α} is the smallest eigenvalue of linear operator L^{α} . In §3, we shall show that λ is the limit of a sequence of the principal eigenvalues, each of them corresponds to a linear operator in the class. Finally, in §4, we shall obtain a probabilistic representation for λ .

Our method of proof is similar to that of [3] and [4]. Namely, it proceeds firstly by consid ering the transformation such that $v = -\log u$, after then by applying Bellman equation's method to the equation with respet to *υ* obtained by such logarithmic transformation of (0.2). Therefore our results mainly rely on the theory of stochastic control and Bellman equation developped by [1], [5] and [6](See also [2]) .

C.Pucci showed in [8] that $\lambda = \min \lambda^{\alpha}$, in the case where $a(\alpha, x) = \alpha(x)$ and $\alpha(\cdot)$ is a matrix-valued bounded measurable function. In [8], he also gave an interesting example in which $D = \{x \in R^d; |x| < 1\}$, and there exist an eigenvalue and corresponding (smooth)