ON HESSIAN STRUCTURES ON THE EUCLIDEAN SPACE
AND THE HYPERBOLIC SPACE

HIDEYUKI KITO

(Received July 24, 1997)

1. Introduction

Let M be a manifold with a flat affine connection D. A Riemannian metric g on M is said to be a Hessian metric if g can be locally written $g = D^2 u$ with a local function u. We call such a pair (D, g) a Hessian structure on M and a triple (M, D, g) a Hessian manifold ([5]). Hessian structure appears in affine differential geometry and information geometry ([1], [4]).

If (D, g) is a Hessian structure on M, then in terms of an affine coordinate system (x^i) with respect to D, g can be expressed by $g = \sum_{ij} (\partial^2 u / \partial x^i \partial x^j) dx^i dx^j$. Since a Kähler metric h on a complex manifold can be locally written $h = \sum_{i,j} (\partial^2 v / \partial z^i \partial \bar{z}^j) dz^i d\bar{z}^j$ with a local real-valued function v in terms of a complex local coordinate system (z^i), a Hessian manifold may be regarded as a real number version of a Kähler manifold. Thus we are interested in similarity between Kähler manifolds and Hessian manifolds.

Given a complex structure on a manifold, the set of Kähler metrics is infinite-dimensional. Similarly, given a flat affine connection, the set of Hessian metrics is infinite-dimensional. We next consider the converse situation. Given a Riemannian metric g, the set of almost complex structures J that makes g into a Kähler metric is finite-dimensional because J is parallel with respect to the Riemannian connection. As a Hessian structure version of this, a question arises whether the set of flat affine connections that makes a given Riemannian metric into a Hessian metric is finite-dimensional. In this paper, we shall show that in the cases of the Euclidean space (\mathbb{R}^n, g_0) and the hyperbolic space (\mathbb{H}^n, g_0), the set of such connections is infinite-dimensional.

We prepare the terminology and notation. Let (M, g) be a Riemannian manifold of dimension ≥ 2 and $S^3(M)$ the space of all symmetric covariant tensor fields of degree 3 on M. We denote by R and ∇ the curvature tensor and the Riemannian connection, respectively. If D is a flat affine connection of M that makes g into a Hessian metric, then the covariant tensor T corresponding to $\hat{T} = D - \nabla$ by g is an element of $S^3(M)$ satisfying $R^{\nabla + \hat{T}} = 0$ on M. Conversely, if the tensor \hat{T} of type $(1, 2)$ corresponding to $T \in S^3(M)$ by g satisfies $R^{\nabla + \hat{T}} = 0$ on M, then $D = \nabla + \hat{T}$ defines