Endo, H. Osaka J. Math. 35 (1998), 915-930

A CONSTRUCTION OF SURFACE BUNDLES OVER SURFACES WITH NON-ZERO SIGNATURE

HISAAKI ENDO[†]

(Received June 11, 1997)

1. Introduction

Let Σ_g (respectively Σ_h) be a closed oriented surface of genus g (respectively h), where g (respectively h) is a non-negative integer. Let $\text{Diff}_+\Sigma_h$ be the group of all orientation-preserving diffeomorphisms of Σ_h with C^{∞} -topology. A Σ_h -bundle over Σ_g (also called a surface bundle over a surface) is fiber bundle $\xi = (E, \Sigma_g, p, \Sigma_h, \text{Diff}_+\Sigma_h)$ over Σ_g with total space E, fiber Σ_h , projection $p: E \longrightarrow \Sigma_g$ and structure group $\text{Diff}_+\Sigma_h$. Our main concern is the signature $\tau(E)$ of the total space E of ξ .

It is easily seen that if ξ is a trivial bundle then $\tau(E) = \tau(\Sigma_g)\tau(\Sigma_h) = 0$. Chern-Hirzebruch-Serre [5] proved that if the fundamental group $\pi(\Sigma_g)$ of Σ_g acts trivially on the cohomology ring $H^*(\Sigma_h; \mathbb{R})$ of Σ_h then $\tau(E) = 0$.

Kodaira [12] and Atiyah [1] gave examples of surface bundles over surfaces with non-zero signature. For each pair (m, t) of integers $m, t \in \mathbb{Z} \ (m \ge 2, t \ge 3)$, Kodaira constructed a surface bundle $\xi = \xi(m, t)$ with

$$g = m^{2t}(t-1) + 1,$$

$$h = mt,$$

$$\tau(E) = \frac{4}{3}m^{2t-1}(t-1)(m^2 - 1)$$

By setting m = 2 and t = 3, we obtain a surface bundle $\xi = \xi(2,3)$ with g = 129, h = 6 and $\tau(E) = 256$. The total space E of the bundle $\xi = \xi(m,t)$ is an m-fold branched covering of $\Sigma_g \times \Sigma_t$ and its signature $\tau(E)$ can be calculated by using G-signature theorem(see [9] and [11]).

Meyer [16], [17] gave a signature formula for surface bundles over surfaces in terms of the signature cocycle τ_h , which is a 2-cocycle of the Siegel modular group $Sp(2h,\mathbb{Z})$ of degree h. Using the signature cocycle and Birman-Hilden's relations [3] of mapping class groups of surfaces, he showed that if h = 1, 2 or g = 1 then

[†]The author is partially supported by JSPS Research Fellowships for Young Scientists.