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ACYCLIC ALGEBRAIC SURFACES
BOUNDED BY SEIFERT SPHERES
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Let Y be a complex algebraic surface. We say that it is Z-acyclic (respectively
Q-acyclic) if its reduced homology with coefficients in Z (resp. in Q) vanishes.
Topologically one can represent Y as a compact 4-manifold with boundary (denote
the boundary by 5), attached by a collar S x [0,1). Call 5 the boundary of Y.
If Y is an affine surface in C m then S is the intersection of Y with a sufficiently
large sphere. We say that Y is Λ-acyclic at infinity If 5 is an ^4-homology 3-sphere.
(A = Z, Q). If Y is A-acyclic then it is A-acyclic at infinity. If Y is Q-acyclic and
Z-acyclic at infinity, then it is Z-acyclic.

In the paper [18] Ramanujam proved that the only Z-acyclic surface bounded by
a homotopy 3-sphere is C 2 , and he also constructed there the first example of a non-
trivial Z-acyclic (and even contractible) surface. Later on Gurjar and Shastri [7]
proved that all Z-acyclic surfaces are rationnal. Tom Dieck and Petri [1] classifind
all acyclic surfaces which rise out of line configurations on P2. Fujita [5] (resp.
Miyanishi, Tsunoda [11] and Gurjar, Miyanishi [6]) classified acyclic surfaces with
Έ = 0 (resp. —oo and 1), where « denotes the log-Kodaira dimension. Zaidenberg
[21] pointed out the connection of Z-acyclic surfaces with exotic algebraic and
analytic structures on Cn, n > 3. Flenner and Zaidenberg [4] studied deformations
of acyclic surfaces.

A Seίfert fibration (see [19], [17]) on a smooth compact 3-manifold M is a
mapping onto a 2-manifold π : M —• B, which is a locally trivial fibration with
fiber S1 over B — {pi,... ,pr} and which looks nearpj like D2xSλ —> D2, {zι,z2) »-•
ZVlz¥> where D2 = {\z\2 < 1} c C, S 1 = dD2 and μJ9 Vj are coprime integers,

μj > 2. The π~1(pj) are called multiple fibers; M is called Seifert manifold if
it admits a Seifert fibration. Seifert A-homology sphere {A stands for Z or Q)
is a Seifert manifold M with H%{M\A) = if*(53;A). In this case the base B
is a 2-sphere. The question, when a Seifert homology sphere bounds an acyclic
4-manifold, was studied, for instance, in [3], [15].

Our main result is:

Theorem 1. Let Y be a smooth algebraic Q-acyclic surface of logarithmic
Kodaira dimension 2, bounded by a Seifert Q-homology sphere with r multiple fibers.


