Zucconi, F. Osaka J. Math. **34** (1997), 411–428

SURFACES WITH CANONICAL MAP OF DEGREE THREE AND $K^2 = 3p_g - 5$

FRANCESCO ZUCCONI*

(Recieved February 19, 1996)

Introduction

The canonical map of a nonsingular variety X of dimension n, $X \xrightarrow{\phi_{K_X}} P^{p_g-1}$, is the rational map given by $x \mapsto (s_1(x), \dots, s_{p_g}(x))$ where $\langle s_i \rangle_{i=1,\dots,p_g}$ is a basis of $H^0(X, \mathcal{O}_X(K_X))$ and where K_X , the so called canonical divisor, is a divisor such that $\mathcal{O}_X(K_X)$ is the sheaf of holomorphic n-forms. Let $\phi_{K_X}(X) = \Sigma$ be the image. If we assume dim $\Sigma = n$ then there is a natural number $d = \deg \phi_{K_X}$ associated to K_X .

If n = 1 then d can only be 1 or 2 and d = 1 is the general case. The special case d = 2 occurs, and, by this feature, admits a very explicit description: in fact d = 2 if and only if X is a hyperelliptic curve.

If n = 2 Castelnuovo proved that if $K_X^2 < 3p_g - 7$ then d = 2 and Σ is a ruled surface, while if $K_X^2 = 3p_g - 7$ then d = 1 or d = 2 and Σ is a ruled surface. He also classified surfaces with $K_X^2 = 3p_g - 7$ and d = 1, (see [1] for a modern reference). Since then the theory of the canonical map of surfaces has been extensively studied by several authors; here we can quote [20], [18], [9], [3], [21], [15]. However, the case d = 3 is not yet well understood. The initial idea, due to Castelnuovo, to study the case d = 3 was to consider a fibration of X on a smooth curve B, $f: X \to B$, such that the canonical linear system $|K_X|$ induces a g_3^1 on the fibers of f. In fact, following this idea, Pompilj proved that if d = 3 and $K_X^2 = 3p_g - 6$ then $q = \dim_{\mathbb{C}} H^1(X, \mathcal{O}_X(K_X)) = 0$ and $(p_g, K_X^2) = (3, 3), (4, 6)$ or (5,9). He also classified these surfaces completely ([18]). In the seventies Horikawa rediscovered these surfaces except for the case $p_g = 5$ ([12], [13]). In [14] Konno gives a detailed classification of surfaces with $K_X^2 = 3p_g - 6$. In particular he considers the case d = 3 and $p_g = 5$. We also know that if d = 3 and q > 0 then $K_X^2 \ge 3p_g - 4$ [7, Proposition 5.1]. Moreover by [21, Theorem 2] we know that $p_q \leq 9$ if $K^2 = 3p_q - 5$ and d = 3. Thus the problem of classifying surfaces with $K_X^2 = 3p_q - 5$ and d = 3 arises very naturally. In this paper we show that the line $K^2 = 3p_g - 5$ gives rise to two families which we completely described. One of them $(K^2 = 7, p_g = 4, \deg \phi_{|K_X|} = 3)$ is of a certain interest for two reasons:

^{*}Research carried out under the ECHCM project AGE (Algebraic Geometry in Europe), contract number ERBCHRXCT 940557 and C.N.R. 201.01.120