Jäger, W. and Saitō, Y. Osaka J. Math. **34** (1997), 267–301

THE REDUCED WAVE EQUATION IN LAYERED MATERIALS

WILLI JÄGER and YOSHIMI SAITO¹

(Recieved March 12, 1996)

1. Introduction

The mathematical theory of wave in layered media is still posing interesting mathematical problems even in the linear, stationary case.

In Jäger-Saito [9] and [8], we studied the spectrum of the reduced wave operator

(1.1)
$$H_0 = -\mu_0(x)^{-1}\Delta,$$

where $\mu_0(x)$ is a simple function which takes a two positive values μ_{01} and μ_{02} on Ω_1 and Ω_2 respectively. Here Ω_ℓ , $\ell = 1, 2$, are open sets of \mathbf{R}^N such that

(1.2)
$$\begin{cases} \Omega_1 \cap \Omega_2 = \emptyset, \\ \overline{\Omega_1} \cup \Omega_2 = \Omega_1 \cup \overline{\Omega_2} = \mathbf{R}^N, \end{cases}$$

 $\overline{\Omega_{\ell}}$ being the closure of Ω_{ℓ} . Under a new condition on the separating surface $S = \partial \Omega_1 = \partial \Omega_2$, we have established the limiting absorption principle for H_0 which implies that H_0 is absolute continuous. Our condition is satisfied, for example, for the case where S is a cylinder.

In this work we are going to extend the results in [9] to the multimedia case, the case where $\mu_0(x)$ can take finitely or infinitely many values (see §2). The limiting absorption principle will be established and, again, the operator H_0 is absolute continuous. Also we shall consider short-range or long-range perturbation of H_0 , that is, we shall study the operator

(1.3)
$$H = -\mu(x)^{-1}\Delta,$$

where

(1.4)
$$\mu(x) = \mu_0(x) + \mu_1(x)$$

¹The second author was partly supported by Deutche Forschungs Gemeinschaft through SFB 359.