Masaoka, H. Osaka J. Math. 34 (1997), 223-231

QUASIREGULAR MAPPINGS AND d-THINNESS

HIROAKI MASAOKA

(Received December 28, 1995)

0. Introduction

In the study of boundary behavior of solutions of the classical Dirichlet problem thinness is an important notion. Recently notion of *p*-thinness (or *p*-thickness) is introduced in nonlinear potential theory and studied deeply. For p=2, *p*-thinness (resp. *p*-thickness) coinsides with thinness (resp. thickness) with respect to the classical potential theory. In this note we are especially concerned with *d*-thinness (or *d*-thickness) on the *d* dimensional Euclidean space \mathbb{R}^d ($d \ge 2$). The purpose of this note is to consider whether *d*-thinness (or *d*-thickness) is quasiregularly invariant or not. We obtain

Theorem 0.1. Let G be a subdomain of \mathbb{R}^d ($d \ge 2$), E a subset of G, ξ a point of $G \setminus E$, and f a quasiregular mapping from G into \mathbb{R}^d . If E is d-thick at ξ , then f(E) is d-thick at $f(\xi)$.

The following theorem is an immediate conclusion of our main Theorem 0.1.

Theorem 0.2 (O. Martio and J. Sarvas [11]). Let G be a subdomain of \mathbb{R}^d $(d \ge 2)$, E a subset of G, ξ a point of $G \setminus E$ and f a quasiconformal mapping from G into \mathbb{R}^d . If E is d-thin (resp. d-thick) at ξ , then f(E) is d-thin (resp. d-thick) at $f(\xi)$.

Theorem 0.1 is obtained by the results of nonlinear potential theory. For d=2, H. Shiga [15] also obtains Theorem 0.2 by a different method from [11].

This note is organized as follows. In $\S1$ we give preliminaries and discuss whether *d*-thickness (or *d*-thinness) is invariant by quasiregular mappings (see Theorem 1.1). In $\S2$ and $\S3$ we are concerned with applications of Theorem 0.2. In $\S2$, comparison between thinness and minimal thinness, and Theorem 0.2 give us the quasiconformal invariance of minimal thinness under a condition (see Theorem 2.1). In \$3 we prove that the harmonic dimension of Heins' covering surface is quasiconformally invariant under a condition (see Theorem 3.1).

1. Preliminaries and Proof of Theorem 0.1