Cho, Y.S. Osaka J. Math. 34 (1997), 169–173

SEIBERG-WITTEN INVARIANTS ON NON-SYMPLECTIC 4-MANIFOLDS

YONG SEUNG CHO

(Received February 19, 1996)

Let X be an oriented, closed Riemannian 4-manifold. There is an integral cohomology class which reduces mod (2) to the second Stieffel-Whiney class $w_2(X)$. This integral cohomology class induces a $Spin^c$ -structure on X. Seiberg and Witten in [10] introduced a new invariant on X which is a differential-topological invariant. Taubes in [9] proved that every closed symplectic 4-manifold has a non-trivial Seiberg-Witten invariant. The Seiberg-Witten invariants of connected sums of 4-manifolds with $b_2^+ > 0$ identically vanish. Kotschick, Morgan and Taubes in [8] showed that there are closed oriented 4-manifolds with nontrivial Seiberg-Witten invariants which do not admit symplectic structures. They considered the case which is the first Betti number $b_1(N)=0$. We would like to generalize their theorem by giving a certain condition instead of $b_1(N)=0$, of course our case will cover their case. We introduce their theorem:

Theorem ([8]). Let X be a manifold with a nontrivial Seiberg-Witten invariant with $b_2^+(X) > 1$, and let N be a manifold with $b_1(N) = b_2^+(N) = 0$ whose fundamental group has a nontrivial finite quotient. Then M = X # N has a non-trivial Seiberg-Witten invariant but does not admit any symplectic structure.

Let *M* be a closed symplectic 4-manifold and let $M = X^{\sharp}N$ be a smooth connected sum decomposition. By the vanishing theorem of Seiberg-Witten invariants and non-trivial Seiberg-Witten invariants for symplectic manifolds, one of the summands, say it *N*, has a negative definite intersection form. By Donaldson's Theorem [5] there is a basis $\{e_1, \dots, e_n\}$ of the free part of $H^2(N, \mathbb{Z})$ such that in this basis the intersection form of *N* is diagonal, where *n* is the rank of $H^2(N, \mathbb{Z})$. An element $\alpha \in H^2(N, \mathbb{Z})$ is said to be characteristic if the intersection number $\alpha \cdot x = x \cdot x \mod (2)$ for any $x \in H^2(N, \mathbb{Z})$. If α is characteristic, then $\alpha \equiv w_2(N) \mod 2$.

Lemma 1. Let N be a closed oriented Riemannian 4-manifold with $b_2^+(N)=0$ and let $\{e_1, \dots, e_n\}$ is a basis for the free part of $H^2(N, \mathbb{Z})$ such that $e_i \cdot e_j = -\delta_{ij}$.

The present studies were supported in part by the BSRI program, Ministry of Education, 1996. project No. BSRI-96-1424, and GARC-KOSEF.