CYCLIC SURGERY ON GENUS ONE KNOTS

Masakazu TERAGAITO

(Received May 2, 1996)

0. Introduction

The real projective 3 -space, denoted by $R P^{3}$, is identified with the lens space of type (2,1). Then one can ask: when can $R P^{3}$ be obtained by Dehn surgery on a knot in the 3 -sphere S^{3} ? Clearly $R P^{3}$ is obtained by Dehn surgery on a trivial knot. However, it is conjectured that no Dehn surgery on a nontrivial knot K in S^{3} yields $R P^{3}$ (cf. [1,4]). It is known to be true if K is a composite knot [3], a torus knot [9], an alternating knot [10], a satellite knot $[1,12,13]$, or a symmetric knot [1].

In this paper we prove the conjecture for genus one knots.
Theorem 0.1. Real projective 3-space $R P^{3}$ cannot be obtained by Dehn surgery on a genus one knot in S^{3}.

This will be proved by applying the combinatorial techniques developed in [2,5,6,8].

1. Preliminaries

Let K be a genus one knot which is neither a torus knot nor a satellite knot. Let $N(K)$ be a tubular neighborhood of K and let $E(K)=S^{3}-\operatorname{int} N(K)$. Suppose that some surgery on K yields $R P^{3}$, that is, $E(K) \cup J=R P^{3}$ where J is a solid torus. By [2], the surgery coefficient is ± 2.

Let $P^{2} \subset R P^{3}$ be a projective plane which intersects J in a disjoint union of meridian disks of J. We assume that $\left|P^{2} \cap J\right|$ is minimal among all projective planes in $R P^{3}$ that intersect J in a family of meridian disks of J. Let $p=\left|P^{2} \cap J\right|$ and $P=P^{2} \cap E(K)$. Then P is incompressible in $E(K)$ by the minimality of p. If p is even, then $E(K)$ would contain a closed non-orientable surface by attaching tubes to ∂P. Hence p is odd. Furthermore, if $p=1$ then K is either a torus knot or a ($2, \pm 1$)-cable knot. Thus $p \neq 1$.

Let Q be a genus one Seifert surface for K. We may assume that P and Q intersect transversely, and ∂Q intersects each component of ∂P exactly twice. By the incompressibility of P and Q, we can assume that no circle component of

