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1. Introduction.

The weight vectors of a resolution tower of toric modifications for an irreducible

germ of a plane curve C carry enough information to read off invariants such as

the Puiseux pairs, multiplicities, etc [29]. However, each step of the inductive

construction of a tower of toric modifications depends on a choice of the modification

local coordinates. This ambiguity makes it difficult to study the equi-singularity

problem of a family of germs of plane curves or to study a global curve. It is

the purpose of this paper to make a canonical choice of the modification local

coordinates (ui9Vi) (Theorem 4.5), and to obtain a canonical sequence of germs of

curves {C f;/= 1,••-,&} (Ck = C) such that the local knot of the curve Ci is a

compound torus knot around the local knot of the curve Ci-ί. We will show

that the local equations ht{x9y) of the the germs {Cί;ι = 1, ,A:} are the Tschirnhausen

approximate polynomials of the local equation f(x9y) for C, provided that f(x9y)

is a monic polynomial in y.

The importance of the Tschirnhausen approximate polynomials was first

observed by Abhyankar-Moh [3,4], and our work is very much influenced by

them. However, our result gives not only a geometric interpretation of [3,4] but

also a new method to study the equi-singularity problem, see [35], for a given

family of germs of irreducible plane curves f(x9y9t) = O whose Tschirnhausen

approximate polynomials hi(x9y)9 ι = l , ••,&— 1 do not depend on /.

In section 6, we show that a family of germs of plane curves {ft(x,y) = 0} with

Tschirnhausen approximate polynomials ht{x9y)9 i=l9- -9k— 1 not depending upon

t and satisfying an additional intersection condition is equi-singular (Theorem 6.2).

In section 8, we will give a new proof and a generalization of the Abhyankar-

Moh-Suzuki theorem from the viewpoint of the equi-singularity at infinity (Theorems

8.2, 8.3, 8.7).
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