Ohyama, Y. Osaka J. Math. 33 (1996), 927–949

SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS RELATED TO SECOND ORDER LINEAR EQUATIONS

YOUSUKE OHYAMA

(Received September 25, 1995)

0. Introduction

We will construct new nonlinear dynamical systems from linear differential equations of second order. This method is first applied by Jacobi, in 1848 ([9]), in the case of the equation

(0.1)
$$x(1-x)\frac{d^2y}{dx^2} + (1-2x)\frac{dy}{dx} - \frac{1}{4}y = 0.$$

A solution of (0.1) is given by the complete elliptic integral

$$K = \int_0^1 \frac{dt}{\sqrt{(1 - t^2)(1 - xt^2)}} = \frac{\pi}{2}\theta_3^2$$

and Jacobi found a nonlinear equation:

(0.2)
$$(y^2 y''' - 15yy'y'' + 30y'^3)^2 + 32(yy'' - 3y'^2)^3 = -\pi^2 y^{10} (yy'' - 3y'^2)^2,$$

which is satisfied by Jacobi's elliptic theta functions θ_2 , θ_3 and θ_4 .

Later, Halphen rewrote (0.2) as a nonlinear dynamical system ([7]):

(0.3)
$$\begin{cases} X' + Y' = 2XY, \\ Y' + Z' = 2YZ, \\ Z' + X' = 2ZX. \end{cases}$$

Halphen showed that logarithmic derivatives of theta null values satisfy (0.3). The structure of (0.3) is studied in [4] and [11]. Halphen also studied nonlinear systems deduced from generic hypergeometric equations ([8]).

In this paper, we will construct nonlinear equations from general second-order linear equations following Jacobi's idea. They are equivalent to the well-known equation written by the Schwarzian derivative. One of the aim of this paper is