Xiao, Y. Osaka J. Math. 33 (1996), 895–913

HAUSDORFF MEASURE OF THE SAMPLE PATHS OF GAUSSIAN RANDOM FIELDS

YIMIN XIAO

(Received November 17, 1995)

1. Introduction

Let Y(t) $(t \in \mathbb{R}^N)$ be a real-valued, centered Gaussian random field with Y(0)=0. We assume that Y(t) $(t \in \mathbb{R}^N)$ has stationary increments and continuous covariance function R(t,s)=EY(t)Y(s) given by

(1.1)
$$R(t,s) = \int_{\mathbf{R}^N} (e^{i\langle t,\lambda\rangle} - 1)(e^{-i\langle s,\lambda\rangle} - 1)\Delta(d\lambda),$$

where $\langle x, y \rangle$ is the ordinary scalar product in \mathbb{R}^N and $\Delta(d\lambda)$ is a nonnegative symmetric measure on $\mathbb{R}^N \setminus \{0\}$ satisfying

(1.2)
$$\int_{\mathbb{R}^N} \frac{|\lambda|^2}{1+|\lambda|^2} \Delta(d\lambda) < \infty.$$

Then there exists a centered complex-valued Gaussian random measure $W(d\lambda)$ such that

(1.3)
$$Y(t) = \int_{\mathbf{R}^N} (e^{i\langle t,\lambda\rangle} - 1) W(d\lambda)$$

and for any Borel sets $A, B \subseteq \mathbb{R}^N$

$$E(W(A)\overline{W(B)}) = \Delta(A \cap B)$$
 and $W(-A) = \overline{W(A)}$.

It follows from (1.3) that

(1.4)
$$E[(Y(t+h) - Y(t))^2] = 2 \int_{\mathbb{R}^N} (1 - \cos\langle h, \lambda \rangle) \Delta(d\lambda).$$

We assume that there exist constants $\delta_0 > 0$, $0 < c_1 \le c_2 < \infty$ and a non-decreasing, continuous function $\sigma: [0, \delta_0) \to [0, \infty)$ which is regularly varying at the origin with index α ($0 < \alpha < 1$) such that for any $t \in \mathbb{R}^N$ and $h \in \mathbb{R}^N$ with $|h| \le \delta_0$

(1.5)
$$E[(Y(t+h) - Y(t))^2] \le c_1 \sigma^2(|h|).$$