Kawabata, T. and Takeda, M. Osaka J. Math. 33 (1996), 881-893

ON UNIQUENESS PROBLEM FOR LOCAL DIRICHLET FORMS

TOSHIHIRO KAWABATA and MASAYOSHI TAKEDA

(Received December 20, 1994)

1. Introduction

Let X be a locally compact separable metric space and let m be a positive Radon measure on X with everywhere dense support. Let $(\mathscr{E},\mathscr{F})$ be a regular Dirichlet space satisfying the strong local property, i.e., $\mathscr{E}(u,v)=0$ if u is constant on a neighbourhood of the support of the measure $|v| \cdot m$. Then, the form \mathscr{E} can be written as

$$\mathscr{E}(u,u) = \frac{1}{2} \int_{X} d\mu_{\langle u \rangle}, \quad u \in \mathscr{F},$$

where $\mu_{\langle u \rangle}$ is the energy measure of $u \in \mathscr{F}$ (cf. §3.2 in [7]). We say that a function u is *locally in* \mathscr{F} ($u \in \mathscr{F}_{loc}$ in notation) if, for any relatively compact open subset G of X, there exists a function $w \in \mathscr{F}$ such that u = w m-a.e. on G. Because of the strong locality of (\mathscr{E}, \mathscr{F}), the energy measure $\mu_{\langle u \rangle}$ can be defined for $u \in \mathscr{F}_{loc}$.

A pseudo metric ρ on X associated with $(\mathscr{E}, \mathscr{F})$ is defined by

(1)
$$\rho(x,y) = \sup \{ u(x) - u(y) : u \in \mathscr{F}_{loc} \cap C(X), \ \mu_{\langle u \rangle} \leq m \},$$

where $\mu_{\langle u \rangle} \leq m$ means that the energy measure $\mu_{\langle u \rangle}$ is absolutely continuous with respect to *m* with Radon-Nikodym derivative $\frac{d\mu_{\langle u \rangle}}{dm} \leq 1$ *m*-a.e. The pseudo metric ρ is called *intrinsic metric* and its properties has been investigated by Biroli and Mosco [1] and Sturm [17], [18]. Now, we make the following:

ASSUMPTION A. ρ is a metric on X and the topology induced by it coincides with the original one. Moreover, (X, ρ) is a complete metric space.

The objective of this paper is to show the uniqueness of the extensions of $(\mathscr{E}, \mathscr{F})$ under Assumption A. In §2, we shall prove that if $(\mathscr{E}, \mathscr{F})$ fulfills Assumption A, then it has a unique extension in Silverstein's sense (Theorem 2.2), which was introduced in [14] in order to classify the symmetric Markov semigroups dominating