THE K_* -LOCAL TYPE OF THE ORBIT MANIFOLD $(S^{2m+1} \times S^I)/D_q$ BY THE DIHEDRAL GROUP D_q

YASUZO NISHIMURA

(Received September 6, 1995)

Introduction

For a given CW-spectrum E there is an associated E-homology theory $E_*X = \pi_*$ $(E \wedge X)$. A CW-spectrum Y is called E_* -local if any E_* -equivalence $A \to B$ induces an isomorphism $[B,Y]_*\cong [A,Y]_*$. For any CW-spectrum X there exists an E_* -equivalence $\iota_E\colon X\to X_E$ such that X_E is E_* -local. X_E is called the E_* -localization of X. Let KO and KU be the real and the complex K-spectrum respectively. There is no difference between the KO_* - and KU_* -localizations, and so we denote by S_K the K_* -localization of the sphere spectrem $S=\Sigma^0$. According to the smashing theorem [2, Corollary 4.7] the smash product $S_K \wedge X$ is actually the K_* -localization of X for any CW-spectrum X.

In this note we shall be interested in the K_* -local type of certain orbit manifolds $D(q)^{m,l}$ introduced as a filtration of a classifying space of the dihedral group D_q in [8]. The manifold $D(q)^{m,l}$ is defind as follows: Let $q \ge 3$ be an odd integer, and D_q the dihedral group generated by two elements a and b with relations $a^q = b^2 = abab = 1$. Consider the unit spheres S^{2m+1} and S^l in the complex (m+1)-space C^{m+1} and the real (l+1)-space R^{l+1} . Then D_q operates freely on the product space $S^{2m+1} \times S^l$ by

$$a \cdot (z,x) = (z \exp(2\pi\sqrt{-1}/q), x), \quad b \cdot (z,x) = (\bar{z}, -x)$$

where \bar{z} is the conjugate of z. The associted topological quotient spaces

$$\begin{split} D(q)^{2m+1,l} &= (S^{2m+1} \times S^l) / D_q = (L(q)^{2m+1} \times S^l) / Z_2 \,, \\ D(q)^{2m,l} &= (L(q)^{2m} \times S^l) / Z_2 \subset D(q)^{2m+1,l} \end{split}$$

are defined where $L(q)^{2m+1} = L^m(q)$ is the (2m+1)-dimensional lens space mod q and $L(q)^{2m} = L_0^m(q)$ its 2m-skeleton.

The group $KU^0D(q)^{m,l}$ is decomposed to a direct sum of KU^0 -groups of suspensions of stunted lens spaces mod q and mod 2 (cf. [5, Theorem 3.9]). Moreover KO^0 - and J^0 -groups of $D(q)^{m,l}$ have a quite similar direct sum decomposition (cf. [10] or [7]). In section 1 we shall show that $D(q)^{m,l}$ itself has