Shibuya, T. Osaka J. Math. 33 (1996), 751–760

SELF \triangle - EQUIVALENCE OF RIBBON LINKS

TETSUO SHIBUYA

(Received June 8, 1995)

1. Introduction

Throughout this paper, knots and links mean tame and oriented ones in an oriented 3-space R^3 .

Several properties of local moves of links were studied in many papers, for example, homotopy of cobordant links in [3], [4] and boundary links in [1], [5], Δ -equivalence of links in [6], [7] and self #-equivalences of links in [8], [9] and [10].

In this paper, we investigate the self Δ -equivalence of ribbon links.

For a link ℓ , let B^3 be a 3-ball such that $\ell \cap B^3$ is a tangle illustrated in Fig. 1(a). The local move from Fig. 1(a) to (b) is called a Δ -move. Especially if these arcs are contained in the same component of ℓ , this move is called a self Δ -move. For two links ℓ and ℓ' , if ℓ can be deformed into ℓ' by a finite se-

quence of self Δ -moves, we say that ℓ and ℓ' are self Δ -equivalent or that ℓ is self Δ -equivalent to ℓ' .

An *n*-component link $\ell = k_1 \cup \cdots \cup k_n$ is called a ribbon link if there are *n* disks $\mathscr{C} = C_1 \cup \cdots \cup C_n$ in \mathbb{R}^3 with $\partial \mathscr{C} = \ell$, $\partial C_i = k_i$, such that the singularity of \mathscr{C} , denoted by $\mathscr{S}(\mathscr{C})$, consists of mutually disjoint simple arcs of ribbon type, Fig. 2(b). For an arc β of $\mathscr{S}(\mathscr{C})$ in Fig. 2(b), the pre-images β^* and β'^* of β in Fig. 2(a) are called the *i*-line and the *b*-line respectively.

In this paper, we shall prove the following.

Theorem. Any ribbon link is self Δ -equivalent to a trivial link.

The author would like to thank the referee whose helpful comments greatly improved the presentations.