Tsukada, K. Osaka J. Math. 33 (1996), 697-707

TOTALLY GEODESIC HYPERSURFACES OF NATURALLY REDUCTIVE HOMOGENEOUS SPACES

KAZUMI TSUKADA

(Received June 8, 1995)

1. Introduction

Totally geodesic submanifolds of Riemannian symmetric spaces have been well investigated and it has been shown that they have beautiful and fruitful properties. In particular, due to the (M_+, M_-) -theory by B.Y. Chen and T. Nagano [1] this subject has made great progress. Naturally reductive homogeneous spaces are known as a natural generalization of Riemannian symmetric spaces. K. Tojo [6] investigated totally geodesic submanifolds of naturally reductive homogeneous spaces and obtained a necessary and sufficient condition of their existence. We will recall his result in section 3. Moreover he implicitly made the following conjecture.

Conjecture. If a simply connected irreducible naturally reductive homogeneous space M admits a totally geodesic hypersurface, then M has constant sectional curvature.

The conjecture is regarded as a generalization of the result which was shown in the case of Riemannian symmetric spaces by B.Y. Chen and T. Nagano [1]. K. Tojo gave an affirmative answer to the conjecture in the case that dim M=3, 4 and 5 [6] and in the case that M is a normal homogeneous space [7]. We shall prove that the conjecture above is true.

Main Theorem. If a simply connected irreducible (as a Riemannian manifold) naturally reductive homogeneous space M admits a totally geodesic hypersurface, then M has constant sectional curvature.

We shall discuss the irreducibility of naturally reductive homogeneous spaces in Section 2 and prove the main theorem in Section 3.

2. Irreducibility of naturally reductive homogeneous spaces

We first recall basic definitions and properties of naturally reductive