ON THE WELL POSEDNESS OF THE CAUCHY PROBLEM FOR A CLASS OF HYPERBOLIC OPERATORS WITH MULTIPLE INVOLUTIVE CHARACTERISTICS

VANIA SORDONI

(Received July 24, 1995)

1. Introduction

Let $X \subset \mathbb{R}^{n+1} = \mathbb{R}_{x_0} \times \mathbb{R}^n_{x'}$, $x' = (x_1, x_2, \dots, x_n)$ be an open set such that $0 \in X$ and let us consider a differential operator of order m with C^{∞} coefficients:

(1.1)
$$P(x, D_x) = P_m(x, D_x) + P_{m-1}(x, D_x) + \cdots$$

where we denote by $P_{m-j}(x, D_x)$ the homogeneous part of order m-j of P. Let us suppose that:

(H₁) the hyperplane $x_0 = 0$ is non-characteristics for P and the principal symbol $p_m(x, \xi)$ is hyperbolic with respect to ξ_0 .

In this paper we shall study the well posedness of the Cauchy problem in C^{∞} for the operator P in some cases where $p_m(x,\xi)$ is not strictly hyperbolic but the set of multiple characteristics has a very special form, as we will specify further. (For a definition of correctly posed Cauchy problem in $X_0 = \{x \in X; x_0 < 0\}$ we refer to [5]).

We shall suppose that $p_m(x,\xi)$ vanishes exactly of order $m_1 \le m$ on a smooth manifold Σ and that p_m is strictly hyperbolic outside Σ .

On Σ we make the following assumptions:

 (H_2) for any point $\rho \in \Sigma$, there exists a conic neighborhood Ω of ρ and d+1 (d < n) smooth functions q_j , $j = 0, \dots, d$, defined on $W =: \Omega \cup (-\Omega)$ and homogeous of degree one such that $\Sigma \cap W$ is given by

(1.2)
$$\{ \rho \in W; q_0(\rho) = .. = q_d(\rho) = 0 \}$$

with $\{q_i, q_i\}(\rho) = 0$ for any $\rho \in \Sigma \cap W$.

(Here we have set $-\Omega =: \{(x, \xi) \in T *X \setminus 0; (x, -\xi) \in \Omega\}$).

Moreover, denoting by ω and $\sigma = d\omega$ the canonical 1 and 2 forms in T^*X we suppose that $dq_j(\rho)$ and $\omega(\rho)$ are linearly independent one forms and that $H_{x_0}(\rho)$