Koiso, N. Osaka J. Math. **33** (1996), 93-98

ON A WAVE EQUATION CORRESPONDING TO GEODESICS

Dedicated to Professor Hideki Ozeki on his 60th birthday

NORIHITO KOISO

(Received September 5, 1994)

0. Introduction

For a closed curve $\gamma(x)$ in a riemannian manifold M we define its energy $E(\gamma)$ by $\|\partial_x \gamma\|^2$. The first variation $(d/dt)_{t=0}E(\gamma(t, *))$ is given by $-2\langle \partial_t \gamma, \nabla_x^2 \gamma \rangle$. Therefore, its Euler-Lagrange equation is the equation of geodesics. We consider a corresponding hyperbolic equation of $\gamma = \gamma(t, x)$:

(H) $\nabla_t^2 \gamma + \mu \partial_t \gamma = \nabla_x^2 \gamma,$

where the coefficient μ represents the resistance and is usually a positive constant. This equation is locally expressed as

$$\partial_t^2 \gamma^i + \Gamma_{jk}^i(\gamma) \partial_t \gamma^j \partial_t \gamma^k + \mu \partial_t \gamma^i = \partial_x^2 \gamma^i + \Gamma_{jk}^i(\gamma) \partial_x \gamma^j \partial_x \gamma^k,$$

which is a semi-linear wave equation.

Eells and Sampson [1] introduced a corresponding heat equation

(P)
$$\partial_t \gamma = \nabla_x^2 \gamma.$$

We know that if the manifold M is compact and real analytic, then the solution of (P) exists for all time and converges to a geodesic [3].

Physically, equation (H) represents the equation of motion of a rubber band in viscous liquid. Therefore, it is likely that results similar to (P) hold. In fact we will prove the following result.

Theorem. Let M be a complete riemannian manifold and μ a constant. Then Cauchy problem (H) for closed curves has a unique solution $\gamma(t, x)$ on $\mathbf{R} \times S^1$. If M is compact and $\mu > 0$, then the solution almost converges to geodesics; that is, $\partial_t \gamma \rightarrow 0$ and $\nabla_x^2 \gamma \rightarrow 0$ when $t \rightarrow \infty$.

However the convergence of γ itself is still open, even on a manifold with negative sectional curvature.