ON THE $\bar{\partial}$ -COHOMOLOGY GROUPS OF STRONGLY *q*-CONCAVE MANIFOLDS

KAZUHISA MIYAZAWA

(Received July 18, 1994)

(Revised February 13, 1995)

0. Introduction

Let X be a paracompact complex manifold of dimension n and $\pi: E \to X$ be a holomorphic vector bundle. We denote by $\Omega^{p}(E)$ the germ of E-valued holomorphic p-forms, and by $H^{q}(X, \Omega^{p}(E))$ the sheaf cohomology group of X of degree q with coefficients in $\Omega^{p}(E)$. In 1955, Serre showed the following basic theorem with respect to complex analysis.

Theorem (Serre duality, cf: [15]). If $H^{q+i}(X, \Omega^p(E))$ (i=0, 1) are Hausdorff, then $H^q(X, \Omega^p(E))$ is a Fréchet space, and its dual space and $H_k^{n-q}(X, \Omega^{n-p}(E^*))$ are isomorphic. Here, E^* denotes the dual of E, and $H_k^i(X, \Omega^{\cdot}(E))$ denotes the compactly supported sheaf cohomology group of Xwith coefficients in $\Omega^{\cdot}(E)$.

If $H^{q}(X, \Omega^{p}(E))$ is finite dimensional, then it is Hausdorff (cf: [15]). But, in general $H^{q}(X, \Omega^{p}(E))$ is not Hausdorff (cf: [8], [15]).

The cohomology groups of open manifolds were studied by Grauert [5] for solving Levi's problem, and his result played a fundamental role in the theory of singularities and hyperfunctions. As a natural extension of Grauert's work, it has been known that the finiteness of the cohomology groups results from on the convexity of manifolds :

X is called strongly q-convex (resp. strongly q-concave) if there exists an exhaustion function $\boldsymbol{\varphi}: X \rightarrow \boldsymbol{R}$ of class C^{∞} whose Levi form has at least n-q+1 positive (resp. n-q+1 negative) eigenvalues outside a compact subset K of X. We call K an exceptional set. In 1962, Andreotti and Grauert established finiteness theorems for cohomology groups which include the following theorem as a special case.