Kametani, Y. and Nagatomo, Y. Osaka J. Math. **32** (1995), 1023–1033

CONSTRUCTION OF c₂-SELF-DUAL BUNDLES ON A QUATERNIONIC PROJECTIVE SPACE

YUKIO KAMETANI AND YASUYUKI NAGATOMO

(Received June 20, 1994)

1. Introduction

In the A.D.H.M.-construction of anti-self-dual bundles on S^4 , the Penrose twistor transformation $\pi_Z: \mathbb{P}^3 \to S^4$ plays an important role [2],[6]. This fibration is easily obtaind when we identify S^4 with HP^1 and C^2 with H. An anti-self-dual vector bundle F with unitary structure on S^4 is lifted to a holomorphic vector bundle \tilde{F} on \mathbb{P}^3 with respect to the induced connection. \mathbb{P}^3 has a real structure σ induced by the right multiplication by the unit quaternion j which is different from the usual real strucure and preserves the fibration. Although σ on \mathbb{P}^3 has no fixed points, it does have fixed lines. These are precisely the fibres of π_Z . So the fibres of π_Z are called *real lines* and are denoted by \mathbb{P}_x ($x \in S^4$). Then the above holomorphic vector bundle \tilde{F} has the following properties.

(1) \tilde{F} restricted to an arbitrary real line P_x is holomorphically trivial.

(2) The cohomology group $H^1(\mathbf{P}^3, \tilde{F}(-2))$ vanishes.

By the definition of \tilde{F} , (1) is trivial. But (2) is a deep result given by Drinfeld-Manin [6], Rawnsley [16], Douady [5] and Hitchin [8]. On the other hand, Barth-Hulek [3] have shown the following. If a holomorphic vector bundle E on P^3 satisfies $E \cong E^*(E^*)$ is the dual bundle) and $H^1(P^3, E(-2)) = 0$ and if E restricted to some line is holomorphically trivial, then E is constructed by some monad. Consequently, A.D.H.M-construction is completed.

We take HP^n instead of $S^4 \cong HP^1$. Differential-geometrically, HP^n is one of the quaternionic Kähler manifolds which are 4n-dimensional oriented Riemannian manifolds whose holonomy groups are contained in the subgroup $Sp(n) \cdot Sp(1), n \ge 1$. Nitta [13] and Mamone Capria and Salamon [4] have developed independently higher dimensional analogues of the notion of (anti-)self-dual connections on a quaternionic Kähler manifold. Those connections are called c_1, c_2 and c_3 -self-dual connections in Galicki and Poon [7] which are Yang-Mills. We use these terminology.

As for the Penrose twistor space on a half-conformally flat manifold [1], we also have a higher dimensional analogue. Salamon showed that there is a twistor space Z which has a natural complex structure on an arbitrary quaternionic Kähler manifold M [18]. If we pull back c_2 -self-dual form to Z, we get (1,1) form on