ANALYSIS ON LOCAL DIRICHLET SPACES - II. UPPER GAUSSIAN ESTIMATES FOR THE FUNDAMENTAL SOLUTIONS OF PARABOLIC EQUATIONS

KARL-THEODOR STURM

(Received August 6, 1993)

0. Introduction

For every $t \in \mathbf{R}$, let \mathscr{E}_t be a regular, local Dirichlet form with common domain $\mathscr{F} \subset L^2(X,m)$ on a locally compact, separable Hausdorff space X. We study the behaviour of (global as well as local) solutions of the parabolic equation

$$L_t u = \frac{\partial}{\partial t} u \quad \text{on } \mathbf{R} \times X. \tag{0.1}$$

The (not necessarily selfadjoint) operators L_t on $L^2(X,m)$ are supposed to be associated with the (not necessarily symmetric) Dirichlet forms \mathscr{E}_t on $L^2(X,m)$ according to

$$-(L_t u, v) = \mathscr{E}_t(u, v).$$

To simplify things, let us first of all consider the case where all the \mathscr{E}_t 's are symmetric and strongly local. In this case, the only assumption in the whole paper which is imposed on the forms \mathscr{E}_t is the uniform parabolicity condition

$$k \cdot \mathscr{E}(u, u) \le \mathscr{E}_t(u, u) \le K \cdot \mathscr{E}(u, u). \tag{0.2}$$

Here \mathscr{E} is a fixed symmetric and strongly local, regular Dirichlet form. In terms of \mathscr{E} we define the intrinsic distance ρ on X which is *assumed* to reproduce the original topology on X. The main result of the first part of this paper is the following integrated upper Gaussian estimate.

Theorem 0.1. The transition operators T_t^s , s < t, associated with (0.1) can be estimated as follows

$$(T_t^s 1_A, 1_B) \le \sqrt{m(A)} \cdot \sqrt{m(B)} \cdot \exp\left(-\frac{\rho^2(A, B)}{4K(t-s)}\right) \cdot \exp\left(-k\lambda(t-s)\right)$$
(0.3)