Yamada, Y. Osaka J. Math. **32** (1995), 185–192

AN EXTENSION OF WHITNEY'S CONGRUENCE

YUICHI YAMADA

(Received July 1, 1993)

1. Introduction and Main results

Throughout this paper, we will work in the PL category, and all embeddings will be locally flat.

Let M be a connected and oriented 4-manifold, F a closed and connected surface of Euler characteristic $\chi(F)$. For a given embedding of F into $M(F \subset M)$, let e(M,F) be the normal Euler number of it, and let [F] be the element in $H_2(M;Z_2)$ represented by F in M. We are interested in the ralation between e(M,F) and [F]. In the case of $M=S^4$, the following theorem is well-known.

Theorem 1.1 (H. Whitney [8]: Whitney's congruence). If $M = S^4$,

$$e(M,F)+2\chi(F)\equiv 0 \mod 4.$$

For some time, we assume that M is closed and $H_1(M;Z) = \{0\}$. We will define a Z_4 -quadratic map q from $H_2(M;Z_2)$ to Z_4 as follows. By the assumption $H_1(M;Z) = \{0\}$, the mod 2-reduction map p_2 from $H_2(M;Z)$ to $H_2(M;Z_2)$ is surjective. For a given element α in $H_2(M;Z_2)$, we define $q(\alpha)$ by

$$q(\alpha) \equiv \widetilde{\alpha} \circ \widetilde{\alpha} \mod 4$$
,

where $\tilde{\alpha}$ is an element of $p_2^{-1}(\alpha)$ and \circ is the intersection form on $H_2(M; Z)$.

The well-definedness of q is easy to see, and q is Z_4 -quadratic, i.e.,

$$q(\alpha + \beta) \equiv q(\alpha) + q(\beta) + 2(\alpha \bullet \beta) \mod 4$$
,

where • is $(Z_2$ -valued) intersection form on $H_2(M; Z_2)$, and 2: $Z_2 \rightarrow Z_4$ is the natural embedding.

Using the quadratic function q, we extend Theorem 1.1 as follows:

Theorem 1.2.

$$e(M,F) + 2\chi(F) \equiv q([F]) \mod 4.$$