Laitinen, E. Osaka J. Math. 32 (1995), 165-170

ENDOMORPHISMS OF HOMOGENEOUS SPACES OF LIE GROUPS

Erkki LAITINEN

(Received May 6, 1993)

If H is a closed subgroup of a topological group G it is well-known that there is a bijection

 $\operatorname{Map}_{G}(G/H, G/H) \xrightarrow{\sim} (G/H)^{H}$

which is actually a homeomorphism when the mapping space is equipped with compact-open topology. Homeomorphisms correspond to the subspaces

Homeo_G(G/H) \cong NH/H.

Our main purpose is to prove

Theorem. If G is a Lie group and H is a closed subgroup then NH/H is open in $(G/H)^{H}$.

In [tD, Ch. IV.1] Tammo tom Dieck defines a universal additive invariant U(G) of pointed finite G-CW-complexes for arbitrary topological groups G and computes it for compact Lie groups. As a corollary we obtain that his result is valid for arbitrary Lie groups, too.

Corollary. U(G) is a free abelian group on elements $u(G/H^+)$ where H runs through a complete set of conjugacy classes of closed subgroups H in G for any Lie group G.

The condition

(O)
$$NH/H$$
 is open in $(G/H)^H$

was introduced in a study with Wolfgang Lück [LL] in order to define the equivariant Lefschetz class of a G-endomorphism $f: X \to X$ of a finite G-CW-complex.

The inverse images of the subspaces $NH/H \subset (G/H)^H \subset G/H$ are