TWO COUNTEREXAMPLES TO CORNEA'S CONJECTURE ON THIN SETS

PAVEL PYRIH

(Received July 5, 1993)

1. Introduction

In the paper of Cornea ([1], p. 836) is the following conjecture: A set $A \subset \mathbb{R}^d$ is thin at 0 if there exist $v_1, v_2, v_3 \in \mathbb{R}^d$ linearly independent (pairwise, if d=2) with $||v_j|| = 1$ and such that $T_{v_j}(A)$ is thin at 0, j = 1, 2, 3, where $T_v(x) := x - \langle x, v \rangle v$. We show that this conjecture fails.

We recall that the *fine topology* on \mathbb{R}^d is the smallest topology on \mathbb{R}^d for which all superharmonic functions are continuous in the extended sense. A set $E \subset \mathbb{R}^d$ is *thin* at x if x is not a fine limit point of E. The Wiener test relates thinness of E to the *capacity* of certain subsets of E. We note that thinness of a set at a point is related to irregularity of boundary points relative to the Dirichlet problem. For general information see [2], [3].

2. An example in R^2

We denote P_x , P_y , P_z and P_w the orthogonal projections which map \mathbb{R}^2 onto a line through the origin in such a way that the points (0,1), (1,0), (1,-1) and (1,1), respectively are mapped to the origin. We set $I_2 := \{(x,y) \in \mathbb{R}^2, 0 \le x \le 1, 0 \le y \le 1\}$, cap denotes the logarithmic capacity.

Lemma 2.1. Given $\varepsilon > 0$ there exists a set $E \subset I_2$ such that $\operatorname{cap}(P_x E) < \varepsilon$, $\operatorname{cap}(P_y E) < \varepsilon$, $\operatorname{cap}(P_z E) = 0$ and $\operatorname{cap}(E) \ge \operatorname{cap}(P_w E) \ge \sqrt{2/8}$.

Proof. We set $A := \{(x,0) \in I_2, x \in Q\}$, A is countable, hence cap(A) = 0. There exists an open set $U \supset A$ in \mathbb{R}^2 such that $cap(U) < \varepsilon$. Denote $V := \{(x,0)\} \in I_2\} \cap U$. We set $E := \{(x,y) \in I_2, (x,0) \in V, 0 \le y \le \varepsilon, x + y \in Q\}$. Then

- (i) $P_x E = V \subset U$, hence $\operatorname{cap}(P_x E) < \varepsilon$;
- (ii) $P_{v}E = \{(0, y) \in I_{2}, 0 \le y \le \varepsilon\}$, hence $\operatorname{cap}(P_{v}E) < \varepsilon$;

Research Supported by the Grant No. 201/93/2174 of Czech Grant Agency and by the Grant No. 354 of Charles University.