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1. Introduction

The universal Teichmiiller space 7(1), which is a universal parameter space
for all Riemann surfaces, is a complex Banach manifold that may be defined as
the homogeneous space QS(S')/Mob(S'). Here QS(S') denotes the group of all
quasisymmetric homeomorphisms of the unit circle S*, and Mob(S') is the
three-parameter subgroup of Mobius transformations of the unit disc (restricted
to the boundary circle). There is a remarkable homogeneous Kéhler complex
manifold, M = Diff(S*)/M6b(S*),—arising from applying the Kirillov-Kostant coad-
joint orbit method to the C*-diffeomorphism group Diff(S*) of the circle ([27]). M
clearly sits embedded in 7(1) (since any smooth difftomorphism is quasisymmetric).

In [18] it was proved that the canonical complex-analytic and Kédhler structures
on these two spaces coincide under the natural injection of M into 7(1). (The
Kihler structure on T(1) is formal—the pairing converges on precisely the H>'?
vector fields on the circle.) The relevant complex-analytic and symplectic structures
on M, (and its close relative N=Diff(S')/S?, arise from the representation
theory of Diff(S!); whereas on T(1) the complex structure is dictated by Teichmiiller
theory, and the (formal) Kéhler metric is Weil-Petersson. Thus, the homogeneous
space M is a complex analytic submanifold (not locally closed) in 7{(1), carrying
a canonical Kdhler metric.

In subsequent work ([14], [15]) it was shown that one can canonically associate
infinite-dimensional period matrices to the smooth points M of 7(1). The crucial
step in this construction was a faithful representation (Segal [23]) of Diff(S"') on
the Fréchet space

V= C*Maps(S*, R)/R(the constant maps). )

Diff(S!) acts by substitution (i.e., pullback) on the functions in ¥ as a group of
toplinear automorphisms that preserve a basic symplectic from that V carries.

In order to be able to extend the infinite dimensional period map to the full
space T(1), it is necessary to replace V by a suitable “completed” space that is



