THE CHERN CHARACTER OF THE SYMMETRIC SPACE SU (2n) /SO (2n)

TAKASHI WATANABE

(Received April 8, 1993)

0. Introduction

For $n \ge 1$, let $t: SU(n) \to SU(n)$ be the map defined by $t(x) = \bar{x}$ for $x \in SU(n)$, where \bar{x} is the complex conjugate of a unitary matrix x. The natural inclusion $\mathbf{R} \subset \mathbf{C}$ yields a monomorphism $i_1: SO(n) \to SU(n)$ of topological groups. Clearly $i_1(SO(n)) = \{x \in SU(n) | t(x) = x\}$. So the quotient space $SU(n)/i_1(SO(n))$, which we abbreviate to SU(n)/SO(n), forms a compact symmetric space. It is denoted by AI (of rank n-1) in É. Cartan's notation. In this paper we compute its Chern character

ch: $K^*(SU(2n)/SO(2n)) \rightarrow H^{**}(SU(2n)/SO(2n); \mathbf{Q}),$

while that of SU(2n+1)/SO(2n+1) has been described in [8].

1. K-rings

In this section we collect some results on K-theory of related spaces needed in the sequel.

Let G be a compact Lie group. Then the complex representation ring R(G) forms a λ -ring. For each integer $k \ge 0$, let $\lambda^k \colon R(G) \to R(G)$ be the k-th exterior power operation. The following is a known result: see [4, Chapter 13] or [9, Chapter 4].

Proposition 1. For $n \ge 2$, put $\lambda_1 = [C^n] \in R(SU(n))$ and let $\lambda_k = \lambda^k(\lambda_1)$. Then

$$R(SU(n)) = \mathbf{Z}[\lambda_1, \lambda_2, \cdots, \lambda_{n-1}],$$

where $\lambda_0 = 1$ and $\lambda_n = 1$.

Proposition 2. t^* : $R(SU(n)) \rightarrow R(SU(n))$ satisfies

$$t^*(\lambda_k) = \lambda_{n-k}$$
 for $k = 1, \dots, n-1$.