Kawakami, T. Osaka J. Math. **31** (1994), 831–835

NONISOMORPHIC ALGEBRAIC MODELS OF NASH MANIFOLDS AND COMPACTIFIABLE C^{∞} MANIFOLDS

TOMOHIRO KAWAKAMI

(Received March 5, 1993)

1. Introduction

A well-known theorem of A. Tognoli [9] asserts that every compact C^{∞} submanifold M of \mathbb{R}^n with 2 dim $M+1 \leq n$, one can find a C^{∞} imbedding $e: M \to \mathbb{R}^n$, arbitrarily close in the C^{∞} topology to the inclusion map $M \to \mathbf{R}$, such that e(M) is a nonsingular algebraic subset of \mathbf{R}^n . In particular, M admits an algebraic model. Here an algebraic model of M means a nonsingular algebraic subset of some Euclidean space diffeomorphic to M.J. Bochnak and W. Kucharz showed in [4] that Mhas a continuous family of birationally nonequivalent algebraic models when M is a connected closed manifold with dim $M \ge 1$. In this paper, we consider algebraic models of a given affine Nash manifold and a given compactifiable C^{∞} manifold. Here we say that a C^{∞} manifold M is compactifiable if there exists a compact C^{∞} manifold Y with boundary such that M is C^{∞} diffeomorphic to the interior of Y. M. Shiota proved in [8, Remark 6.2.11] that any affine Nash manifold admits an algebraic model. We prove that either any Nash manifold or any compactifiable C^{∞} manifold have an infinite family of birationally nonequivalent algebraic models. More precisely, we prove the following.

Theorem 1. Each affine Nash manifold M with dim $M \ge 1$ has an infinite family of nonsingular algebraic subsets $\{X_n\}_{n\in\mathbb{N}}$ of some Euclibean space such that each X_n is Nash diffeomorphic to M and that X_n is not birationally equivalent to X_m for $n \ne m$.

Theorem 2. Every compactifiable C^{∞} manifold M with dim $M \ge 1$ has an infinite family of nonsingular algebraic subsets $\{X_n\}_{n\in\mathbb{N}}$ of some Euclidean space such that each X_n is C^{∞} diffeomorphic to M and that X_n is not birationally equivalent to X_m for $n \ne m$.

Theorem 2 is a refinement of [3, Corollary 3.3]. We have next