Ushitaki, F. Osaka J. Math. 31 (1994), 403-415

A GENERALIZATION OF A THEOREM OF MILNOR

Dedicated to Professor Seiya Sasao on his 60th birthday

FUMIHIRO USHITAKI

(Received October 29, 1992)

1. Introduction

We work in the smooth category with free actions by groups in the present paper. Let us recall Milnor's theorem:

Theorem 1.1 ([6; Corollary 12.13]). Any h-cobordism W between lens spaces L and L' must be diffeomorphic to $L \times [0,1]$ if the dimension of L is greater than or equal to 5.

Let Z_m be the cyclic group of order m. Then we see that Theorem 1.1 is put in another way as follows:

Theorem 1.2. Let S(V) and S(V') be free linear \mathbb{Z}_m -spheres of dimension $2n-1 \ge 5$. Then any \mathbb{Z}_m -h-cobordism W between S(V) and S(V') must be \mathbb{Z}_m -diffeomorphic to $S(V) \times I$, where I = [0,1].

Let R be a ring with unit, G a finite group. Put $GL(R) = \lim_{R \to \infty} GL_n(R)$ and E(R) = [GL(R), GL(R)] the commutator subgroup of GL(R). Then $K_1(R)$ denotes the quotient group GL(R)/E(R). Let Z be the ring of integers and Q the ring of rational munbers. Let Z[G] and Q[G] denote the group rings of G over Z and Q. The Whitehead group of G is the quotient group

$$Wh(G) = K_1(\mathbf{Z}[G]) / < \pm g : g \in G > .$$

The natural inclusion map $i:GL(\mathbb{Z}[G]) \to GL(\mathbb{Q}[G])$ gives rise to a group homomorphism $i_*:K_1(\mathbb{Z}[G]) \to K_1(\mathbb{Q}[G])$. Then $SK_1(\mathbb{Z}[G])$ is defined by setting

$$SK_1(\mathbf{Z}[G]) = \ker[i_*:K_1(\mathbf{Z}[G]) \rightarrow K_1(\mathbf{Q}[G])].$$

In [15], C.T.C. Wall showed that $SK_1(Z[G])$ is isomorphic to the torsion