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Introduction

Since De Concini-Eisenbυd-Procesi [1] defined Hodge algebra, two
special classes have been studied, one of which is an ordinal Hodge
algebra and the other is a square-free Hodge algebra. An ordinal Hodge
algebra ( = algebra with straightening laws, ASL, for short) have been
investigated in detail and we know that an ASL reflects strongly a nature
of a poset.

On the other hand, let A be a square-free Hodge algebra. By [1],
we can associate to A a unique simplicial complex Δ. Then A should
accordingly reflect a nature of Δ. We call A a Hodge algebra on the
simplicial complex Δ. The purpose of the present article is to classify
the simplicial complex on which there exists a homogeneous complete
intersection Hodge algebra of dimension<3. We often employ the
arguments in [5].

In §1, we recall the definition of Hodge algebra and elementary
definitions in topology. In §2, we give a classification of simplicial
complexes Δ when there exists a homogeneous Hodge iC-algebra on Δ
which is a complete intersection. Its proof is given in §3.
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1. Preliminaries

Let Δ be a simplicial complex and let H be the set of vertices of
Δ. We call an element of NH a monomial on Hy where N is the nonnegative
integers and NH is the set of iV-valued functions on H. Given two
monomials L, M on H, we can define a product LM by assigning
LM(x) = L(x) + M(x) to x e H. The support of a monomial M is the subset
Supp M={xeH; M(x)φO). We define ΣΔ by

ΣA = {MeNH; Supp M does not belong to Δ},


