Nishio, M. Suzuki, N. Osaka J. Math. **31** (1994), 331–339

MINIMAL THICKNESS AND UNIQUENESS OF KERNEL FUNCTIONS FOR THE HEAT EQUATION IN SEVERAL VARIABLES

Dedicated to Professor Mitsuru Nakai on his 60th birthday

MASAHARU NISHIO[†] and NORIAKI SUZUKI

(Received December 25, 1992)

1. Introduction

Let $\mathbf{R}^{n+1} = \mathbf{R}^n \times \mathbf{R}$ be the (n+1)-dimensional Euclidean spase $(n \ge 1)$. We consider the heat equation

$$Lu:=\frac{\partial u}{\partial t}-\Delta u=0$$

and its nonnegative solutions (called parabolic functions). For an unbounded domain Ω in \mathbb{R}^{n+1} , a nonnegative parabolic function u in Ω is called a kernel function at infinity (resp. at a point $(y,s) \in \partial_p \Omega$) if u is not identically equal to zero and if u vanishes continuously on $\partial_p \Omega$ (resp. on $\partial_p \Omega \setminus \{(y,s)\}$), where $\partial_p \Omega$ denotes the parabolic boundary of Ω

We study the existence and uniqueness of kernel functions for the domains of the following form:

$$\Omega_{\alpha}(D) = \{(x,t) \in \mathbb{R}^n \times \mathbb{R}; t < 0, (-t)^{-\alpha} x \in D\},\$$

where $\alpha \in \mathbf{R}$ and D is a bounded starlike Lipschitz domain in \mathbf{R}^n with center 0, that is, D is starlike with center 0 and for every point $x_0 \in \partial D, D$ is defined by a Lipschitz graph in some neighborhood of x_0 such that the ray x_00 is its axis(see [3,p. 513]).

J.T. Kemper [5] has studied kernel functions at finite boundary points, but our concern is ones at infinity, as discussed in [7], [8] and [4]. It has been shown that $\Omega_{\alpha}(D)$ has a unique kernel function at infinity if n=1, $\alpha<1$ ([8])and if $n\geq 1$, $\alpha\leq 1/2$ ([7]). Here we use the convention

[†]Partially supported by Grand-in-Aid for Encouragement of Young Scientist (No. 04740094 of Ministry of Education of Japan.