STABLE-LIKE PROCESSES: CONSTRUCTION OF THE TRANSITION DENSITY AND THE BEHAVIOR OF SAMPLE PATHS NEAR t=0

AKIRA NEGORO

(Received August 5, 1992)

Introduction

Let $X=(X_t, P_x; x \in \mathbb{R}^d)$ be a *d*-dimensional pure jump type Markov process associated with the operator $-(-\Delta)^{\alpha(x)/2}(0 < \alpha(x) < 2)$. Following Bass [1], we call it the stable-like process with exponent $\alpha(x)$. Under a mild regularity condition for $\alpha(x)$, the process is first constructed by Bass [1] and next by Tsuchiya [12]: Bass has done it by showing the uniqueness of solutions to the martingale problem for the operator and Tsuchiya by showing the pathwise uniqueness of solutions to a stochastic differential equation associated with the operator.

In this paper, we will show the existence of a transition density and local Hölder conditions for sample paths of the process X with smooth exponent $\alpha(x)$. For this aim, we want to adapt the theory of pseudo-differential operators to the operator $-(-\Delta)^{-\alpha(x)/2}$, but its symbol $-|\xi|^{\alpha(x)}$ is not smooth. Hence we consider the operator L_{Φ} which is obtained from $-(-\Delta)^{\alpha(x)/2}$ by cutting off the support of its integral kernel (i.e. Lévy measure) with a positive smooth function Φ (see Section 1 for the precise definition of L_{Φ}). There exists a pure jump type Markov process X_{Φ} associated with L_{Φ} in the same sense as the above. Since L_{ϕ} can be regarded as a pseudo-differential operator of variable order, we introduce a class of such operators and provide the fundamental theorem for algebra and asymptotic expansion formula of their symbols. Next we prove that L_{Φ} satisfies the (H)-condition (see [7] p.83 for the (H)-These facts allow us to construct a fundamental solution, in the condition). sense of pseudo-differential operators, to the initial-value problem for the equation $\partial_t - L_{\Phi} = 0$. Furthermore, we show that this fundamental solution has a smooth kernel and this gives a transition density of X_{Φ} . Using a localization argument, we see that X also has a transition density. Finally, using certain estimates for the symbol of the fundamental solution and expanding the method of Khintchine [6] and Blumenthal and Getoor [3], we obtain the local Hölder conditions for sample paths of X; this result is a natural extension of that of