ON THE ADDITIVITY OF h-GENUS OF KNOTS

KANJI MORIMOTO

(Received July 22, 1992)

Introduction

We say that $(V_1, V_2; F)$ is a Heegaard splitting of the 3-sphere S^3 , if both V_1 and V_2 are handlebodies, $S^3 = V_1 \cup V_2$ and $V_1 \cap V_2 = \partial V_1 = \partial V_2 = F$. Then F is called a Heegaard surface of S^3 .

Let K be a knot in S^3 . Then it is well known that there exists a Heeagard surface of S^3 which contains K. Thus we define h(K) as the minimum genus among all Heegaard surfaces of S^3 containing K, and we call it the *h*-genus of K. We note here that any two Heegaard surfaces of S^3 with the same genus are mutually ambient isotopic ([11]).

By the definition, it follows that h(K)=0 if and only if K is a trivial knot and that h(K)=1 if and only if K is a torus knot. Hence if h(K)=1 then K is prime. In this paper we show:

Theorem. Let K_1 and K_2 be non-trivial knots in S^3 . If $h(K_1 \# K_2) = 2$, then $h(K_1) = h(K_2) = 1$.

On the other hand, we show the following two propositions.

Proposition 1. Let K_1 and K_2 be non-trivial knots in S^3 with (1, 1)-decompositions. Suppose neither K_1 nor K_2 are torus knots. Then $h(K_1)=h(K_2)=2$ and $h(K_1 \# K_2)=3$.

Here, we say that a knot K admits a (g, b)-decomposition, if there is a genus g Heegaard splitting $(V_1, V_2; F)$ of S^3 such that $V_i \cap K$ is a b-string trivial arc system in V_i (i=1, 2) (cf. [2] and [6]).

REMARK. Since every 2-bridge knot admits a (1, 1)-decomposition, there are infinitely many knots satisfying the hypothesis of Proposition 1.

Proposition 2. Let n be an integer greater than 1 and K_n the knot illustrated in Figure 1. Then $h(K_n)=3$ and $h(K_n \# K)=3$ for any 2-bridge knot K.