ON SPECIAL VALUES AT s=0 OF PARTIAL ZETA-FUNCTIONS FOR REAL QUADRATIC FIELDS

TSUNEO ARAKAWA

(Received October 22, 1992)

1. Introduction

1.1 Let F be a totally real algebraic number field with finite degree, \mathfrak{a} a fractional ideal of F, and F_{ab} the maximal abelian extension of F. We define a map $\xi_{\mathfrak{a}}$ from the quotient space F/\mathfrak{a} to the group $W(F_{ab})$ of roots of unity of F_{ab} using the deep results of Coates-Sinnott [C-S1], [C-S2] and Deligne-Ribet [D-S1]R] on special values of partial zeta functions of F. Under the action of the Galois group $Gal(F_{ab}|F)$ of F_{ab} over F this map behaves formally in a manner similar to Shimura's reciprocity law for elliptic curves with complex multiplication. This reciprocity law for the map ξ_{α} is also a direct consequence of those results of Coates-Sinnott and Deligne-Ribet. On the other hand we have studied in [Ar1] a certain Dirichlet series and its relationship with parital zeta functions of real quadratic fields. In particular the special values at s=0of partial zeta functions of real quadratic fields essentially coincide with the residues at the pole s=0 of our Dirichlet series. Using those residues, we give another expression for the map ξ_a in the case of F a real quadratic field. We also show that the expression works in a reasonable manner under the action of the Galois group $Gal(F_{ab}/F)$.

1.2 We summarize our results. For an integral ideal c of a totally real algebraic number field F, denote by $H_F(c)$ the narrow ray class group modulo c. For each integral ideal b prime to c, we define the partial zeta-function $\zeta_c(b, s)$ to be the sum $\sum_{\alpha} (N\alpha)^{-s}$, α running over all integral ideals of the class of b in $H_F(c)$. Let α be a fractional ideal of F. For each class \bar{z} of the quotient space F/α , we take a totally positive representative element $z \in F$ of the class \bar{z} , and write

$$z\mathfrak{a}^{-1} = \mathfrak{f}^{-1}\mathfrak{k}$$

with coprime integral ideals \mathfrak{f} , \mathfrak{b} of F. Thanks to some results of Coates-Sinnott ([C-S1], [C-S2], [Co]) and Deligne-Ribet ([D-R]), one can define a map $\xi_a: F/\mathfrak{a} \rightarrow W(F_{ab})$ as follows;

(1.2)
$$\xi_{\mathfrak{a}}(\bar{z}) = \exp(2\pi i \zeta_{\mathfrak{f}}(\mathfrak{b}, 0)),$$