CHARACTERIZATIONS OF p-NILPOTENT GROUPS

MASAFUMI MURAI

(Received September 16, 1992)

Introduction

Let G be a finite group and p a prime. For a p-block B of G, let $Irr^{0}(B)$ be the set of irreducible characters of height 0 in B. Most results in this paper are related with the characters of height 0 in the principal p-block $B_{0}(G)$. In section 1 we shall show that G is p-nilpotent if and only if every $\chi \in Irr^{0}(B_{0}(G))$ is modularly irreducible (Theorem 1.3). This result is in a sense analogous to a theorem of Okuyama and Tsushima [8]. We shall give also a characterization of p-nilpotent groups via weights [1]. In section 2 several normal subgroups associated to Ker $\chi, \chi \in Irr^{0}(B)$, are shown to be p-nilpotent. Also p-nilpotent groups are characterized via their character values (Corollary 2.10). In section 3 a question arising from a paper of Ono [9] will be discussed. Throughout this paper (K, R, k) denotes a p-modular system. We assume that K contains the |G|-th roots of unity. The maximal ideal of R is denoted by (π) .

1. Characterizations of *p*-nilpotent groups

Let

 $\Lambda(G) = \{\chi; \chi \in \operatorname{Irr}^{0}(B_{0}(G)), o(\det \chi) \equiv 0 \pmod{p}\},\$

where $o(\det \chi)$ denotes the determinantal order of χ . For an irreducible Brauer character ϕ of G and a subset Λ of $\Lambda(G)$, let $\delta(\Lambda, \phi) = \sum d(\chi, \phi) \chi(1)$, where $d(\chi, \phi)$ is the decomposition number and the sum is taken over all $\chi \in \Lambda$. For brevity, put $\delta(G, \phi) = \delta(\Lambda(G), \phi)$.

The following lemma will be used frequently in the sequel.

Lemma 1.1. If $\delta(G, \phi) \equiv 0 \pmod{p}$ for some irreducible Brauer character ϕ in $B_0(G)$ with $\phi(1) \equiv 0 \pmod{p}$, then G is p-nilpotent.

Proof. Put $N=O^{\flat}(G)$. Since $\phi(1)$ is prime to $p, \psi:=\phi_N$ is irreducible. The same is true for $\chi \in \Lambda(G)$, and the restriction gives a bijection from $\Lambda(G)$ onto the subset Ξ of G-invariant members of $\Lambda(N)$, cf. Corollary 6.28 in Isaacs [5]. From this it follows that $\delta(G, \phi)=\delta(\Xi, \psi)$. Now let Ψ be the character