
Murai, M.
Osaka J. Math.
31 (1994), 1-8
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Introduction

Let G be a finite group and p a prime. For a p-block B of G, let Irr°(B)
be the set of irreducible characters of height 0 in B. Most results in this paper
are related with the characters of height 0 in the principal />-block B0(G).
In section 1 we shall show that G is ^>-nilρotent if and only if every %elrr°
(S0(G)) is modularly irreducible (Theorem 1.3). This result is in a sense analo-
gous to a theorem of Okuyama and Tsushima [8]. We shall give also a char-
acterization of ^-nilpotent groups via weights [1]. In section 2 several normal
subgroups associated to Ker %, %eIrr°(B), are shown to be ^-nilpotent. Also
^-nilpotent groups are characterized via their character values (Corollary 2.10).
In section 3 a question arising from a paper of Ono [9] will be discussed.
Throughout this paper (K, R, k) denotes a ^-modular system. We assume that
K contains the | G \ -th roots of unity. The maximal ideal of R is denoted by

(*)•

1. Characterizations of p-nilpotent groups

Let

A(G)= {%;%eIrr°(S0(G)), o

where o(det X) denotes the determinantal order of X. For an irreducible Brauer
character φ of G and a subset Λ of Λ(G), let S(Λ, φ ) = Σ d(X, φ) %(1), where
d(X, φ) is the decomposition number and the sum is taken over all XGΛ. For
brevity, put δ(G, φ)=S(Λ(G), φ).

The following lemma will be used frequently in the sequel.

Lemma 1.1. If 8(G,φ)^0 (mod p) for some irreducible Brauer character
φ in B0(G) with φ ( l ) * 0 (mod^>), then G is p-nilpotent.

Proof. Put N=OP(G). Since φ(ί) is prime to p, ψ:=φN is irreducible.
The same is true for %^Λ(G), and the restriction gives a bijection from Λ(G)
onto the subset B of G-invariant members of Λ(iV), cf. Corollary 6.28 in Isaacs
[5]. From this it follows that δ(G, φ)=δ(H, ψ). Now let Ψ be the character


