J-GROUPS OF THE SUSPENSIONS OF THE STUNTED LENS SPACES MOD 2p

Dedicated to Professor Michikazu Fujii on his 60th birthday

AKIE TAMAMURA

(Received May 15, 1992)

1. Introduction

Let $L^{n}(q) = S^{2n+1}/\mathbb{Z}_{q}$ be the (2n+1)-dimensional standard lens space mod q. As defined in [10], we set

(1.1)
$$L_q^{2n+1} = L^n(q) ,$$

$$L_q^{2n} = \{ [z_0, \dots, z_n] \in L^n(q) | z_n \text{ is real } \ge 0 \} .$$

By the several papers, we determined the KO-groups $\widetilde{KO}(S^j(L_q^m/L_q^n))$ of the suspensions of the stunted lens spaces L_q^m/L_q^n for the cases $j \equiv 1 \pmod 2$ [25], q=2 [12], q=4 [20] and q=8 [21]. Moreover we determined the J-groups $\widetilde{J}(S^j(L_q^m/L_q^n))$ for the cases odd primes q [19], q=2 [18], q=4 [20] and q=8 [21]. The purpose of this paper is to determine the KO-groups $\widetilde{KO}(S^j(L_{2p}^m/L_{2p}^n))$ and J-groups $\widetilde{J}(S^j(L_{2p}^m/L_{2p}^n))$ for odd primes p.

This paper is organized as follows. In section 2 we state the main theorems: Theorem 2 gives a direct sum decomposition of $\widetilde{KO}(S^j(L_2^m_{r_q}/L_2^n_{r_q}) \text{ for } j\equiv 0 \pmod{2}$, Theorem 3 gives a direct sum decomposition of $\widetilde{J}(S^j(L_2^m_{r_q}/L_2^n_{r_q}))$ for $j\equiv 0 \pmod{2}$ and $n+j+1\equiv 0 \pmod{4}$, Theorem 4 gives the structure of $\widetilde{J}(S^j(L_2^m_{p_r}/L_2^n_{p_r}))$ for $j\equiv 0 \pmod{2}$ and $n+j+1\equiv 0 \pmod{4}$ and the necessary conditions for $L_2^m_{p_r}/L_2^n_{p_r}$ and L_2^{m+i}/L_2^{n+i} to be of the same stable homotopy type are given by Theorem 5 which is an application of Theorems 3 and 4. In section 3 we prepare some lemmas and recall known results in [12], [19] and [25]. The proofs of Theorem 2 and Theorem 3 are given in section 4. The proof of Theorem 4 is given in section 5. In the final section we give the proof of Theorem 5.

The author would like to express her gratitude to Mr. Susumu Kono for helpful suggestions.

2. Statement of results

Let $\nu_p(s)$ denote the exponent of the prime p in the prime power decomposition of s, and $\mathfrak{m}(s)$ the function defined on positive integers as follows (cf.