Kôno, S. and Tamamura, T. Osaka J. Math. 30 (1993), 203-234

J-GROUPS OF SUSPENSIONS OF STUNTED LENS SPACES MOD 8

SUSUMU KÔNO AND AKIE TAMAMURA

(Received December 26, 1991)

1. Introduction

Let $L^{n}(q) = S^{2n+1}/\mathbb{Z}_{q}$ be the (2n+1)-dimensional standard lens space mod q. As defined in [7], we set

(1.1)
$$L_q^{2n+1} = L^n(q),$$
$$L_q^{2n} = \{ [z_0, \dots, z_n] \in L^n(q) | z_n \text{ is real and } z_n \ge 0 \}.$$

In the previous paper [10], we determined the *J*-groups $\tilde{J}(S^{j}(L_{q}^{m}/L_{q}^{n}))$ of the suspensions of the stunted lens spaces L_{q}^{m}/L_{q}^{n} for q=4 and for $j\equiv 1 \pmod{2}$. The purpose of this paper is to determine the *KO*- and *J*-groups of suspensions of stunted lens spaces mod 8.

This paper is organized as follows. In section 2 we state the main theorems: the structures of $\widetilde{KO}(S^j(L_8^m/L_8^n))$ and $\widetilde{J}(S^j(L_8^m/L_8^n))$ for $j \equiv 0 \pmod{2}$ are given in Theorems 1 and 2 respectively. In section 3 we prepare some lemmas and recall known results in [8], [9] and [11]. By virtue of the results in [8], the proofs of Theorems 1 and 2 for the case $j \equiv 0 \pmod{4}$ are given in section 4. Applying the method used in the corresponding parts of [10], we prove Theorems 1 and 2 for the case $j \equiv 2 \pmod{4}$ in the final section.

The authors would like to express their gratitude to Professor Michikazu Fujii, Professor Teiichi Kobayashi and Professor Hideaki Ōshima for helpful suggestions.

2. Statement of results

We prepare functions h_1 , h_2 , h_3 , h_4 , a_1 , a_2 , a_3 , a_4 , a_5 , a_6 and a_7 defined by

(2.1)
$$\begin{cases} h_1(n) = [n/4] + [(n+7)/8] + [(n+4)/8] \\ h_2(n) = [n/4] + [(n+7)/8] + [n/8] + 1 \\ h_3(m, n) = [m/4] - [n/4] \\ h_4(m, n) = [m/8] - [n/8] . \end{cases}$$