Cordero, M. and Figueroa, R. Osaka J. Math. 30 (1993), 171–178

ON SOME NEW CLASSES OF SEMIFIELD PLANES

M. CORDERO* and R. FIGUEROA[†]

(Received October 21, 1991)

1. Introduction

In [9] Hiramine, Matsumoto and Oyama introduced a construction method that associates with any translation plane of order q^2 (q odd) and kernel $K \cong GF(q)$, translation planes of order q^4 and kernel $K' \cong GF(q^2)$. In this article we study the class of semifield planes of order q^4 obtained from this method and show that with a few exceptions, the members of this class are new semifield planes. This class includes some recently constructed classes of planes; namely the class presented by Boerner-Lantz in [4] and the one by Cordero in [6].

2. Notation and preliminary results

Let $S = (S, +, \cdot)$ be a finite semifield which is not a field. We denote by $\pi(S)$ the semifield plane coordinatized by S with respect to the points $(0), (\infty), (0, 0)$ and (1, 1). The dual translation plane of $\pi(S)$ is also a semifield plane and it is coordinatized by the semifield $S^* = (S, +, *)$, where $a * b = b \cdot a$. Let q be an odd prime power, $\mathcal{F} = GF(q^2)$ and $x^r = \overline{x} = x^q$ for $x \in \mathcal{F}$. Let π be a semifield plane obtained by the construction method of Hiramine, Matsumoto and Oyama. Then π admits a matrix spread set of the form

$$\mathcal{M} = \left\{ M(u, v) = \begin{bmatrix} u & v \\ f(v) & \overline{u} \end{bmatrix} : u, v \in \mathcal{F} \right\}$$

where $f: \mathcal{F} \to \mathcal{F}$ is an additive function. π is coordinatized by the semifield $\mathcal{P} = \mathcal{P}_f = (\mathcal{P}, +, \cdot)$, where $\mathcal{P} = \mathcal{F} \times \mathcal{F}$ and

$$(x, y) \cdot (u, v) = (x, y) \begin{bmatrix} u & v \\ f(v) & \overline{u} \end{bmatrix}.$$

We shall denote this plane by π_f . We define the following classes:

^{*}Research partially supported by NSF Grant No. DMS-9107372

[†] Research partially supported by NSF Grant No. RII-9014056, EPSCoR of Puerto Rico Grant, and the ARO Grant for Cornell MSI.