Navarro, G. Osaka J. Math. 30 (1993), 159-169

NONCOPRIME ACTION AND CHARACTER CORRESPONDENCES

Gabriel NAVARRO

(Received January 22, 1991)

1. Introduction

In [7], Nagao extended the Glauberman Correspondence to the non-coprime case by restricting the attention to the S-invariant p-defect zero characters of a finite group G acted by a finite p-group S. Concretely, if G is a complemented normal subgroup of Γ and C is a set of representatives of G-conjugacy classes of complements of G in Γ , Nagao showed that there exists a natural bijection from the set of Γ -invariant p-defect zero characters of G onto $\bigcup_{s \in C} \{p\text{-defect} zero \text{ characters of } C_G(S)\}$, whenever Γ/G is a p-group.

Now we want to make no assumptions on Γ/G (although we will end up making some assumptions on G) and still show that there exists a natural map from some subset of the Γ -invariant characters of G (those who have *p*-defect zero for the primes dividing $|\Gamma/G|$) into $\bigcup_{s \in C} \operatorname{Irr}(C_G(S))$.

As we mention, we pay for this extra generality: we impose some conditions on G (G must be π -separable for the set of primes π dividing $|\Gamma/G|$). Also, although defect zero characters of G will map into defect zero characters of $C_G(S)$ it will not be true, in general, that our map is onto (think on a π -group acted by another π -group with trivial fixed points subgroup). This will be the case, however, when the Hall π -subgroups of Γ are nilpotent (as it happens in Nagao's case). When Γ/G is a p-group (and G is p-solvable) we will certainly show that our map coincides with Nagao's.

The key point in this note is to consider an interesting subset of the irreducible characters of a finite group G acted by a finite group S whose order is nonnecessarily coprime to |G|. If $\operatorname{Ind}_{S}(G) = \{X \in \operatorname{Irr}(G) \text{ such that } X = \mu^{G}, \text{ where } \mu \text{ is an } S\text{-invariant character of an } S\text{-invariant subgroup } H \text{ of } G \text{ with order coprime to } S\}$, then there exists a natural one to one map from $\operatorname{Ind}_{S}(G)$ into $\operatorname{Irr}(C_{G}(S))$. We will show that the image of $X \in \operatorname{Ind}_{S}(G)$ is $\mu^{*C_{G}(S)}$, where $\mu^{*} \in \operatorname{Irr}(C_{H}(S))$ is the Glauberman-Isaacs correspondent of $\mu \in \operatorname{Irr}_{S}(H)$. Of course, one of the problems in this note will be to show that if μ induces irreducibly to G, then μ^{*} induces irreducibly to $C_{G}(S)$ (this was done in [6] when the

Research partially supported by DGICYT. PB90-0414-C03-01