Sumitomo, T. and Tandai, K. Osaka J. Math. 30 (1993), 81-99

INVARIANT DIFFERENTIAL OPERATORS ON THE GRASSMANN MANIFOLD $G_{2,n-1}(C)$

TAKESHI SUMITOMO AND KWOICHI TANDAI

(Received April 18, 1991)

0. Introduction. The present paper is the latter one of twin papers on invariant linear differential operators of Grassmann manifolds. In the former one [9] we determined and clarified the structure of the algebra $D(SG_{2,n-1}(\mathbf{R}))$ of invariant linear differential operators on the Grassmann manifold $SG_{2,n-1}(\mathbf{R})$ of oriented 2-planes in \mathbf{R}^{n+1} by exhibiting a set of generators with their simultaneous eigenspace decompositions.

The complex Grassmann manifold $G_{2,n-1}(C)$ defined as the totality of complex 2-planes passing through the origin of C^{n+1} , is known to be a symmetric space of rank 2. Hence, the algebra $D(G_{2,n-1}(C))$ of invariant linear differential operators acting on $C^{\infty}(G_{2,n-1}(C), R)$ is generated by two differential operators, where $C^{\infty}(M, K)$ denotes the algebra of K-valued C^{∞} -functions defined on a complex manifold M and K denotes either the real number field R or the complex number field C.

The aim of the present paper lies, as in [9], in exhibiting a simultaneous eigenspace decomposition of an explicit set of generators Δ_0^{\wedge} and Δ_1^{\wedge} of the algebra $D(G_{2,n-1}(C))$.

Define

$$\begin{split} \mathbf{S}^{\boldsymbol{p}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) &:= \sum_{k+l=\boldsymbol{p}} \mathbf{S}^{k,l}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) \quad (\text{direct sum}) ,\\ \mathbf{S}^{\boldsymbol{*}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) &:= \sum_{\boldsymbol{p} \geq 0} \mathbf{S}^{\boldsymbol{p}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) \quad (\text{direct sum}) ,\\ \mathbf{S}^{\boldsymbol{*}\boldsymbol{*}}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) &:= \sum_{k,l \geq 0} \mathbf{S}^{k,l}(\boldsymbol{P}_{\boldsymbol{n}}(\boldsymbol{C})) \quad (\text{direct sum}) , \end{split}$$

where $S^{k,l}(P_n(C))$ is the $C^{\infty}(P_n(C), C)$ -module of complex (contravariant) symmetric tensor fields of bidegree (k, l) on the complex projective space $P_n(C)$. $S^{**}(P_n(C))$ is a bigraded algebra over $C^{\infty}(P_n(C), C)$. We obtained in [8] the following about the complex projective space $(P_n(C), g_0)$ with prescribed standard Riemannian metric g_0 :

(1) The eigenspace decomposition of Δ_0 restricted to $K^{**}(P_n(C), g_0)$ is given, Where Δ_0 is the Lichnerowicz operator acting on $S^{**}(P_n(C))$ and $K^{**}(P_n(C), g_0)$ is the bigraded *C*-subalgebra of $S^{**}(P_n(C))$ defined as