THE EXACTNESS OF GENERALIZED SKEW PRODUCTS

ZBIGNIEW S. KOWALSKI

(Received October 11, 1991)

0. Introduction

Recently, it appears several papers concerning ergodic properties of random maps i.e. skew products. See T. Morita [5], S. Pelikan [7], etc. The main proof tool in their considerations is the so-called Perron-Frobenius operator. In the present paper the autor proves the theorem about exactness of generalized skew products using the Pinkser algebra.

Let $\sigma: X \to X$ be the shift endomorphism in a space $X \subset \{1, \dots, s\}^N$ preserving μ . Let $(\sigma, \tilde{\mu})$ be the natural extension of (σ, μ) to the automorphism. The automorphism σ is the shift automorphism on the set $\tilde{X} \subset \{1, \dots, s\}^Z$. Let $\bar{A}_i = \{\tilde{x} \in \tilde{X}: \tilde{x}(0) = i\}, \tilde{\alpha} = \{\tilde{A}_1, \dots, \tilde{A}_s\}$ and $\tilde{\alpha}_m^n = \bigvee_{k=m}^n \tilde{\sigma}^k \tilde{\alpha}$.

DEFINITION. The endomorphism σ is called discrete if $\tilde{\mu}(\tilde{C}) > 0$, for some atom \tilde{C} in $\tilde{\alpha}_{-\infty}^0 \wedge \tilde{\alpha}_0^\infty$.

EXAMPLES: If σ is one-sided Markov shift then it is discrete. If σ is given by Lasota-Yorke type map, then it is also discrete (see [8]).

Let p be a Borel measure on [0, 1] which is positive on open sets. Moreover, let T_1, \dots, T_s be piecewise monotonic and continuous transformations of [0, 1] into itself so that there exists the partition $\beta_0 = \{I_1, I_2, \dots\}$ of finite entropy given by $I_i = (t_{i-1}, t_i)$ with $0 = t_0 < t_1 < \dots$, lim $t_i = 1$, such that $T_j | (t_i, t_{i+1})$ is continuous and strictly monotonic, for $j=1, \dots, s, i=0, 1, \dots$. We assume that the transformation

(1)
$$\overline{T}(x, y) = (\sigma(x), T_{x(0)}y)$$

preserves the product measure $\mu \times p$. Such a transformation is called generalized skew product [2]. The following theorem provides sufficient conditions for \overline{T} to be an exact transformation.

Theorem 1. Let σ be a discrete endomorphism. If the transformations T_i are 1-1 p a.e., for $i=1, \dots, s$, and T_i does not preserve the measure p for some i, then the transformation \overline{T} is exact or \overline{T}^m is not ergodic, for some $m \neq 0$.

Research supported by KBN Grant PB-666/2/91