SPECTRA OF RANDOM MEDIA WITH MANY RANDOMLY DISTRIBUTED OBSTACLES

Dedicated to Professor Shigetoshi Kuroda on his 60th birthday

SHIN OZAWA

(Received September 30, 1991)

1. Let Ω be a bounded domain in R^d with smooth boundary $\partial\Omega$. Let $B(\varepsilon, w_i)$ $(i=1, \dots, n)$ be balls of radius ε with centers w_1, \dots, w_n . We consider the eigenvalue problem of the Laplacian in

$$\Omega_{w(m)} = \Omega \setminus \overline{\bigcup_{i=1}^n B(\varepsilon, w_i)}$$

under the Dirichlet condition on its boundary. Under some scaling limit $\varepsilon \to 0$, $n \to \infty$, $n^{\sigma} \varepsilon \to \alpha$ we know that the spectra of $-\Delta$ in $\Omega_{w(m)}$ under the Dirichlet condition on $\partial \Omega_{w(m)}$ tends to the spectra of Schrödinger operator $-\Delta + cV$ in Ω under the Dirichlet condition on $\partial \Omega$.

There are two main directions in previous research works concerning related problems. One is homogenization as was studied in [3], [7], and another direction is to calculate the eigenvalue of $-\Delta$ in $\Omega_{w(m)}$ in statistical setting, the later of which this paper concerns.

Let V(x) be a positive continuous function on $\overline{\Omega}$ satisfying

$$\int_{\Omega} V(x) dx = 1.$$

Then, Ω can be thought as probability space by the probability law

$$P(x \in A) = \int_A V(x) \, dx \, .$$

Let Ω^n be the product probability space; the corresponding probability law is denoted also by P for any n. Fix $\beta \in [d-2,d)$. Setting $\varepsilon = m^{-1}$, we take m in place of ε as a parameter. Fix and define $n = [m^{\beta}]$, $\mu_j(w(m)) =$ the j-th eigenvalue of $-\Delta$ in $\Omega_{w(m)}$ under the Dirichlet condition on $\partial \Omega_{w(m)}$. Each $\mu_j(w(m))$ is viewed as a random variable on Ω^n .

Problem A. Can one say anything about the statistics of $\mu_i(w(m))$ on Ω^n when $m\to\infty$?

We know the following partial answer.