Senba, T. Osaka J. Math. 29 (1992), 851-904

ON THE LARGE TIME BEHAVIOR OF SOLUTIONS FOR SOME DEGENERATE QUASILINEAR PARABOLIC SYSTEMS

TAKASI SENBA

(Received May 20, 1991)

1. Introduction

We consider the large time behavior of the solutions for the following Cauchy problem:

(1.1)
$$u_t = (u^m)_{xx} - v^n u^n \quad \text{in } \mathbf{R} \times (0, \infty)$$
$$v_t = (v^m)_{xx} - u^n v^n \quad \text{in } \mathbf{R} \times (0, \infty)$$

with initial conditions

(1.2)
$$u(\cdot, 0) = u_0 \text{ and } v(\cdot, 0) = v_0 \text{ on } \boldsymbol{R}$$

Here, m > 1 and $n \ge 1$ are real numbers. Throughout this paper, we assume that m > 1 and $n \ge 1$.

By [10], the following properties are shown:

When the reaction arises among some reactions, for each reactant the equation for reaction-diffusion takes the form

$$\frac{\partial C}{\partial t} = \operatorname{div} D \operatorname{grad} C + q',$$

where C is the concentration, D is the diffusion coefficient and q' is the amount of material formed through chemical reactions per unit volume per unit time. When a reaction arises among n molecules of a substance A and n molecules of a substance B and does not reverse, that is to say, when the reaction is written as

$$nA + nB \Rightarrow$$
 product,

then q' of both equations for A and B are proportional to $-C_A^n C_B^n$, where C_A and C_B are the concentrations of the substances A and B, respectively. That is to say, the concentrations C_A and C_B satisfy the equation

(1.3)
$$\frac{\frac{\partial C_A}{\partial t}}{\frac{\partial C_B}{\partial t}} = \operatorname{div} D_A \operatorname{grad} C_A - k C_A^n C_B^n,$$
$$\frac{\partial C_B}{\partial t} = \operatorname{div} D_B \operatorname{grad} C_B - k C_A^n C_B^n,$$